Homomorphisms between $A$-projective Abelian groups and left Kasch-rings
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 1, pp. 31-43 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Glaz and Wickless introduced the class $G$ of mixed abelian groups $A$ which have finite torsion-free rank and satisfy the following three properties: i) $A_p$ is finite for all primes $p$, ii) $A$ is isomorphic to a pure subgroup of $\Pi _p A_p$, and iii) $\mathop {\mathrm Hom}\nolimits (A,tA)$ is torsion. A ring $R$ is a left Kasch ring if every proper right ideal of $R$ has a non-zero left annihilator. We characterize the elements $A$ of $G$ such that $E(A)/tE(A)$ is a left Kasch ring, and discuss related results.
Glaz and Wickless introduced the class $G$ of mixed abelian groups $A$ which have finite torsion-free rank and satisfy the following three properties: i) $A_p$ is finite for all primes $p$, ii) $A$ is isomorphic to a pure subgroup of $\Pi _p A_p$, and iii) $\mathop {\mathrm Hom}\nolimits (A,tA)$ is torsion. A ring $R$ is a left Kasch ring if every proper right ideal of $R$ has a non-zero left annihilator. We characterize the elements $A$ of $G$ such that $E(A)/tE(A)$ is a left Kasch ring, and discuss related results.
Classification : 20K20, 20K21, 20K25, 20K30
Keywords: mixed Abelian group; endomorphism ring; Kasch ring; $A$-solvable group
@article{CMJ_1998_48_1_a2,
     author = {Albrecht, Ulrich and Jeong, Jong-Woo},
     title = {Homomorphisms between $A$-projective {Abelian} groups and left {Kasch-rings}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {31--43},
     year = {1998},
     volume = {48},
     number = {1},
     mrnumber = {1614064},
     zbl = {0931.20043},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1998_48_1_a2/}
}
TY  - JOUR
AU  - Albrecht, Ulrich
AU  - Jeong, Jong-Woo
TI  - Homomorphisms between $A$-projective Abelian groups and left Kasch-rings
JO  - Czechoslovak Mathematical Journal
PY  - 1998
SP  - 31
EP  - 43
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_1998_48_1_a2/
LA  - en
ID  - CMJ_1998_48_1_a2
ER  - 
%0 Journal Article
%A Albrecht, Ulrich
%A Jeong, Jong-Woo
%T Homomorphisms between $A$-projective Abelian groups and left Kasch-rings
%J Czechoslovak Mathematical Journal
%D 1998
%P 31-43
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_1998_48_1_a2/
%G en
%F CMJ_1998_48_1_a2
Albrecht, Ulrich; Jeong, Jong-Woo. Homomorphisms between $A$-projective Abelian groups and left Kasch-rings. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 1, pp. 31-43. http://geodesic.mathdoc.fr/item/CMJ_1998_48_1_a2/

[ALJA1] U. Albrecht: Bewertete $p$-Gruppen und ein Satz von Szele. J. of Alg. 97 (1985), 201–220. | DOI | MR | Zbl

[ALJA2] U. Albrecht: On the quasi-splitting of exact sequences. J. of Alg. 144 (1991), 344–358. | DOI | MR | Zbl

[ALBR] U. Albrecht: Endomorphism rings of faithfully flat abelian groups of infinite rank. Results in Mathematics 17 (1990), 179–201. | DOI | MR

[ALBR2] U. Albrecht: An Azumaya Theorem for a class of mixed abelian groups. Preprint. | Zbl

[ALBR3] U. Albrecht: Mixed groups projective as modules over their endomorphism ring. Preprint.

[AGW] U. Albrecht, H. P. Goeters and W. Wickless: The flat dimension of mixed abelian groups as $E$-modules. Preprint. | MR

[AF] F. Anderson and K. Fuller: Rings and Categories of Modules. Springer Verlag, Berlin, Heidelberg, New York, 1992. | MR

[Bass] H. Bass: Finistic dimension and a generalization of semi-primary rings. Trans. Amer. Math. Soc. 95 (1960), 466–488. | DOI | MR

[Fu] L. Fuchs: Infinite Abelian Groups. Academic Press, New York, London, 1970/73. | MR

[GW] S. Glaz and W. Wickless: Regular and principal projective endomorphism rings of mixed abelian groups. (to appear). | MR

[HRW] R. Hunter, F. Richman and E. Walker: Subgroups of bounded abelian groups. Abelian Groups and Modules, Udine 1984, Springer Verlag, Berlin, Heidelberg, New York, 1984, pp. 17–36. | MR

[St] Bo Stenström: Rings of Quotients. Springer Verlag, Berlin, Heidelberg, New York, 1975. | MR

[U] F. Ulmer: A flatness criterion in Grothendick categories. Inv. Math. 19 (1973), 331–336. | DOI | MR