@article{CMJ_1998_48_1_a11,
author = {Nov\'ak, V{\'\i}t\v{e}zslav},
title = {Some cardinal characteristics of ordered sets},
journal = {Czechoslovak Mathematical Journal},
pages = {135--144},
year = {1998},
volume = {48},
number = {1},
mrnumber = {1614021},
zbl = {0927.06001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1998_48_1_a11/}
}
Novák, Vítězslav. Some cardinal characteristics of ordered sets. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 1, pp. 135-144. http://geodesic.mathdoc.fr/item/CMJ_1998_48_1_a11/
[1] G. Birkhoff: Generalized Arithmetic. Duke Math. Journ. 9 (1942), 283–302. | DOI | MR | Zbl
[2] G. Birkhoff: Lattice Theory. 3$^{\text{rd}}$ edition. Providence, Rhode Island, 1967. | MR | Zbl
[3] B. Dushnik, E. W. Miller: Partially Ordered Sets. Am. Journ. Math. 63 (1941), 600–610. | DOI | MR
[4] F. Hausdorff: Grundzüge der Mengenlehre. Leipzig, 1914.
[5] H. Komm: On the Dimension of Partially Ordered Sets. Am. Journ. Math. 70 (1948), 507–520. | DOI | MR | Zbl
[6] V. M. Micheev: On sets containing the greatest number of pairwise incomparable Boole vectors. Probl. Kib. 2 (1959), 69–71. (Russian) | MR
[7] V. Novák: On the Pseudodimension of Ordered Sets. Czechoslovak Math. Journ. 13 (88) (1963), 587–598. | MR
[8] V. Novák: On the $\omega _{\nu }$-dimension and $\omega _{\nu }$-pseudodimension of Ordered Sets. Ztschr. math. Logik u. Grund. d. Math. 10 (1964), 43–48. | DOI | MR
[9] M. Novotný: On Representation of Partially Ordered Sets by means of Sequences of 0’s and 1’s. Čas. pěst. mat. 78 (1953), 61–64. (Czech) | MR
[10] M. Novotný: Bemerkung über die Darstellung teilweise geordneter Mengen. Spisy přír. fak. Mas. Univ. Brno 369 (1955), 1–8. | MR
[11] M. Novotný, L. Skula: Über gewisse Topologien auf geordneten Mengen. Fund. Math. 56 (1965), 313–324. | DOI | MR
[12] W. Sierpinski: Cardinal and Ordinal Numbers. Warszawa, 1958. | MR | Zbl
[13] E. Sperner: Ein Satz über Untermengen einer endlichen Menge. Math. Ztschr. 27 (1928), 554–558. | DOI