Some cardinal characteristics of ordered sets
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 1, pp. 135-144 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For ordered (= partially ordered) sets we introduce certain cardinal characteristics of them (some of those are known). We show that these characteristics—with one exception—coincide.
For ordered (= partially ordered) sets we introduce certain cardinal characteristics of them (some of those are known). We show that these characteristics—with one exception—coincide.
Classification : 03E10, 06A06, 06A07
@article{CMJ_1998_48_1_a11,
     author = {Nov\'ak, V{\'\i}t\v{e}zslav},
     title = {Some cardinal characteristics of ordered sets},
     journal = {Czechoslovak Mathematical Journal},
     pages = {135--144},
     year = {1998},
     volume = {48},
     number = {1},
     mrnumber = {1614021},
     zbl = {0927.06001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1998_48_1_a11/}
}
TY  - JOUR
AU  - Novák, Vítězslav
TI  - Some cardinal characteristics of ordered sets
JO  - Czechoslovak Mathematical Journal
PY  - 1998
SP  - 135
EP  - 144
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_1998_48_1_a11/
LA  - en
ID  - CMJ_1998_48_1_a11
ER  - 
%0 Journal Article
%A Novák, Vítězslav
%T Some cardinal characteristics of ordered sets
%J Czechoslovak Mathematical Journal
%D 1998
%P 135-144
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_1998_48_1_a11/
%G en
%F CMJ_1998_48_1_a11
Novák, Vítězslav. Some cardinal characteristics of ordered sets. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 1, pp. 135-144. http://geodesic.mathdoc.fr/item/CMJ_1998_48_1_a11/

[1] G. Birkhoff: Generalized Arithmetic. Duke Math. Journ. 9 (1942), 283–302. | DOI | MR | Zbl

[2] G. Birkhoff: Lattice Theory. 3$^{\text{rd}}$ edition. Providence, Rhode Island, 1967. | MR | Zbl

[3] B. Dushnik, E. W. Miller: Partially Ordered Sets. Am. Journ. Math. 63 (1941), 600–610. | DOI | MR

[4] F. Hausdorff: Grundzüge der Mengenlehre. Leipzig, 1914.

[5] H. Komm: On the Dimension of Partially Ordered Sets. Am. Journ. Math. 70 (1948), 507–520. | DOI | MR | Zbl

[6] V. M. Micheev: On sets containing the greatest number of pairwise incomparable Boole vectors. Probl. Kib. 2 (1959), 69–71. (Russian) | MR

[7] V. Novák: On the Pseudodimension of Ordered Sets. Czechoslovak Math. Journ. 13 (88) (1963), 587–598. | MR

[8] V. Novák: On the $\omega _{\nu }$-dimension and $\omega _{\nu }$-pseudodimension of Ordered Sets. Ztschr. math. Logik u. Grund. d. Math. 10 (1964), 43–48. | DOI | MR

[9] M. Novotný: On Representation of Partially Ordered Sets by means of Sequences of 0’s and 1’s. Čas. pěst. mat. 78 (1953), 61–64. (Czech) | MR

[10] M. Novotný: Bemerkung über die Darstellung teilweise geordneter Mengen. Spisy přír. fak. Mas. Univ. Brno 369 (1955), 1–8. | MR

[11] M. Novotný, L. Skula: Über gewisse Topologien auf geordneten Mengen. Fund. Math. 56 (1965), 313–324. | DOI | MR

[12] W. Sierpinski: Cardinal and Ordinal Numbers. Warszawa, 1958. | MR | Zbl

[13] E. Sperner: Ein Satz über Untermengen einer endlichen Menge. Math. Ztschr. 27 (1928), 554–558. | DOI