On ideals and congruences in BCC-algebras
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 1, pp. 21-29 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We introduce a new concept of ideals in BCC-algebras and describe connections between such ideals and congruences.
We introduce a new concept of ideals in BCC-algebras and describe connections between such ideals and congruences.
Classification : 03G25, 06F35, 08A30
Keywords: BCC-algebra; BCK-algebra; ideal; congruence
@article{CMJ_1998_48_1_a1,
     author = {Dudek, Wies{\l}aw A. and Zhang, Xiaohong},
     title = {On ideals and congruences in {BCC-algebras}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {21--29},
     year = {1998},
     volume = {48},
     number = {1},
     mrnumber = {1614060},
     zbl = {0927.06013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1998_48_1_a1/}
}
TY  - JOUR
AU  - Dudek, Wiesław A.
AU  - Zhang, Xiaohong
TI  - On ideals and congruences in BCC-algebras
JO  - Czechoslovak Mathematical Journal
PY  - 1998
SP  - 21
EP  - 29
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_1998_48_1_a1/
LA  - en
ID  - CMJ_1998_48_1_a1
ER  - 
%0 Journal Article
%A Dudek, Wiesław A.
%A Zhang, Xiaohong
%T On ideals and congruences in BCC-algebras
%J Czechoslovak Mathematical Journal
%D 1998
%P 21-29
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_1998_48_1_a1/
%G en
%F CMJ_1998_48_1_a1
Dudek, Wiesław A.; Zhang, Xiaohong. On ideals and congruences in BCC-algebras. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 1, pp. 21-29. http://geodesic.mathdoc.fr/item/CMJ_1998_48_1_a1/

[1] W. A. Dudek: The number of subalgebras of finite BCC-algebras. Bull. Inst. Math. Academia Sinica 20 (1992), 129–136. | MR | Zbl

[2] W. A. Dudek: On proper BCC-algebras. Bull. Inst. Math. Academia Sinica 20 (1992), 137–150. | MR | Zbl

[3] W. A. Dudek: On constructions of BCC-algebras. Selected Papers on BCK-and BCI-algebras, 1 (1992), 93–96.

[4] K. Iséki and S. Tanaka: Ideal theory of BCK-algebras. Math. Japonica 21 (1976), 351–366. | MR

[5] K. Iséki and S. Tanaka: An introduction to the theory of BCK-algebras. Math. Japonica 23 (1978), 1–26. | MR

[6] Y. Komori: The variety generated by BCC-algebras is finitely based. Reports Fac. Sci. Shizuoka Univ. 17 (1983), 13–16. | MR | Zbl

[7] Y. Komori: The class of BCC-algebras is not a variety. Math. Japonica 29 (1984), 391–394. | MR | Zbl

[8] A. Wroński: BCK-algebras do not form a variety. Math. Japonica 28 (1983), 211–213. | MR