@article{CMJ_1998_48_1_a1,
author = {Dudek, Wies{\l}aw A. and Zhang, Xiaohong},
title = {On ideals and congruences in {BCC-algebras}},
journal = {Czechoslovak Mathematical Journal},
pages = {21--29},
year = {1998},
volume = {48},
number = {1},
mrnumber = {1614060},
zbl = {0927.06013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1998_48_1_a1/}
}
Dudek, Wiesław A.; Zhang, Xiaohong. On ideals and congruences in BCC-algebras. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 1, pp. 21-29. http://geodesic.mathdoc.fr/item/CMJ_1998_48_1_a1/
[1] W. A. Dudek: The number of subalgebras of finite BCC-algebras. Bull. Inst. Math. Academia Sinica 20 (1992), 129–136. | MR | Zbl
[2] W. A. Dudek: On proper BCC-algebras. Bull. Inst. Math. Academia Sinica 20 (1992), 137–150. | MR | Zbl
[3] W. A. Dudek: On constructions of BCC-algebras. Selected Papers on BCK-and BCI-algebras, 1 (1992), 93–96.
[4] K. Iséki and S. Tanaka: Ideal theory of BCK-algebras. Math. Japonica 21 (1976), 351–366. | MR
[5] K. Iséki and S. Tanaka: An introduction to the theory of BCK-algebras. Math. Japonica 23 (1978), 1–26. | MR
[6] Y. Komori: The variety generated by BCC-algebras is finitely based. Reports Fac. Sci. Shizuoka Univ. 17 (1983), 13–16. | MR | Zbl
[7] Y. Komori: The class of BCC-algebras is not a variety. Math. Japonica 29 (1984), 391–394. | MR | Zbl
[8] A. Wroński: BCK-algebras do not form a variety. Math. Japonica 28 (1983), 211–213. | MR