@article{CMJ_1998_48_1_a0,
author = {Kirkland, Stephen J. and Neumann, Michael and Shader, Bryan L.},
title = {Bounds on the subdominant eigenvalue involving group inverses with applications to graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {1--20},
year = {1998},
volume = {48},
number = {1},
mrnumber = {1614056},
zbl = {0931.15012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1998_48_1_a0/}
}
TY - JOUR AU - Kirkland, Stephen J. AU - Neumann, Michael AU - Shader, Bryan L. TI - Bounds on the subdominant eigenvalue involving group inverses with applications to graphs JO - Czechoslovak Mathematical Journal PY - 1998 SP - 1 EP - 20 VL - 48 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMJ_1998_48_1_a0/ LA - en ID - CMJ_1998_48_1_a0 ER -
%0 Journal Article %A Kirkland, Stephen J. %A Neumann, Michael %A Shader, Bryan L. %T Bounds on the subdominant eigenvalue involving group inverses with applications to graphs %J Czechoslovak Mathematical Journal %D 1998 %P 1-20 %V 48 %N 1 %U http://geodesic.mathdoc.fr/item/CMJ_1998_48_1_a0/ %G en %F CMJ_1998_48_1_a0
Kirkland, Stephen J.; Neumann, Michael; Shader, Bryan L. Bounds on the subdominant eigenvalue involving group inverses with applications to graphs. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 1, pp. 1-20. http://geodesic.mathdoc.fr/item/CMJ_1998_48_1_a0/
[1] A. Ben-Israel and T. N. Greville: Generalized Inverses: Theory and Applications. Academic Press, New-York, 1973.
[2] A. Berman and R. J. Plemmons: Nonnegative Matrices in the Mathematical Sciences. Academic Press, New-York, 1979. | MR
[3] S. L. Campbell and C. D. Meyer, Jr.: Generalized Inverses of Linear Transformations. Dover Publications, New York, 1991. | MR
[4] M. Fiedler: Algebraic connectivity of graphs. Czechoslovak Math. J. 23 (1973), 298–305. | MR | Zbl
[5] M. Fiedler: A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory. Czechoslovak Math. J. 25 (1975), 619–633. | MR
[6] C. D. Meyer, Jr.: The role of the group generalized inverse in the theory of finite Markov chains. SIAM Rev. 17 (1975), 443–464. | DOI | MR | Zbl
[7] C. D. Meyer: The condition of a finite Markov chain and perturbations bounds for the limiting probabilities. SIAM J. Alg. Disc. Meth. 1 (1980), 273–283. | DOI | MR
[8] C. D. Meyer: Sensitivity of the stationary distribution of a Markov chain. SIAM J. Matrix Anal. Appl. 15 (1994), 715–728. | DOI | MR | Zbl
[9] C. D. Meyer, Jr. and G. W. Stewart: Derivatives and perturbations of eigenvectors. SIAM J. Numer. Anal. 25 (1988), 679–691. | DOI | MR
[10] R. Merris: Laplacian matrices and graphs: a survey. Lin. Alg. Appl. 197, 198 (1994), 143–176. | DOI | MR
[11] B. Mohar: Eigenvalues, diameter, and mean distance in graphs. Graphs Combin. 7 (1991), 53–64. | DOI | MR | Zbl
[12] M. Neumann and R. J. Plemmons: Convergent nonnegative matrices and iterative methods for consistent linear systems. Numer. Math. 31 (1978), 265–279. | DOI | MR
[13] D. L. Powers: Graph partitioning by eigenvectors. Lin. Alg. Appl. 101 (1988), 121–133. | DOI | MR | Zbl
[14] E. Seneta: Non-negative Matrices and Markov Chains. Second Edition. Springer Verlag, New-York, 1981. | MR
[15] R. S. Varga: Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1962. | MR
[16] J. H. Wilkinson: The Algebraic Eigenvalue Problem. Oxford Univ. Press, London, 1965. | MR | Zbl