On positive solutions of quasilinear elliptic systems
Czechoslovak Mathematical Journal, Tome 47 (1997) no. 4, pp. 681-687 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we consider the existence and nonexistence of positive solutions of degenerate elliptic systems \[ \left\rbrace \begin{array}{ll}-\Delta _p u = f(x,u,v), \quad \text{in} \ \Omega , -\Delta _p v = g(x,u,v), \quad \text{in} \ \Omega , u = v = 0, \quad \text{on} \ \partial \Omega , \end{array}\right.\] where $-\Delta _p$ is the $p$-Laplace operator, $p>1$ and $\Omega $ is a $C^{1,\alpha }$-domain in $\mathbb R^n$. We prove an analogue of [7, 16] for the eigenvalue problem with $f(x,u,v)=\lambda _1 v^{p-1}$, $ g(x,u,v)=\lambda _2u^{p-1}$ and obtain a non-existence result of positive solutions for the general systems.
In this paper, we consider the existence and nonexistence of positive solutions of degenerate elliptic systems \[ \left\rbrace \begin{array}{ll}-\Delta _p u = f(x,u,v), \quad \text{in} \ \Omega , -\Delta _p v = g(x,u,v), \quad \text{in} \ \Omega , u = v = 0, \quad \text{on} \ \partial \Omega , \end{array}\right.\] where $-\Delta _p$ is the $p$-Laplace operator, $p>1$ and $\Omega $ is a $C^{1,\alpha }$-domain in $\mathbb R^n$. We prove an analogue of [7, 16] for the eigenvalue problem with $f(x,u,v)=\lambda _1 v^{p-1}$, $ g(x,u,v)=\lambda _2u^{p-1}$ and obtain a non-existence result of positive solutions for the general systems.
Classification : 35B05, 35J55, 35J65, 35J70
Keywords: Eigenvalue problem; Degenerate elliptic operator; Nonlinear systems; Positive solutions.
@article{CMJ_1997_47_4_a7,
     author = {Cheng, Yuanji},
     title = {On positive solutions of quasilinear elliptic systems},
     journal = {Czechoslovak Mathematical Journal},
     pages = {681--687},
     year = {1997},
     volume = {47},
     number = {4},
     mrnumber = {1479312},
     zbl = {0899.35032},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1997_47_4_a7/}
}
TY  - JOUR
AU  - Cheng, Yuanji
TI  - On positive solutions of quasilinear elliptic systems
JO  - Czechoslovak Mathematical Journal
PY  - 1997
SP  - 681
EP  - 687
VL  - 47
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_1997_47_4_a7/
LA  - en
ID  - CMJ_1997_47_4_a7
ER  - 
%0 Journal Article
%A Cheng, Yuanji
%T On positive solutions of quasilinear elliptic systems
%J Czechoslovak Mathematical Journal
%D 1997
%P 681-687
%V 47
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_1997_47_4_a7/
%G en
%F CMJ_1997_47_4_a7
Cheng, Yuanji. On positive solutions of quasilinear elliptic systems. Czechoslovak Mathematical Journal, Tome 47 (1997) no. 4, pp. 681-687. http://geodesic.mathdoc.fr/item/CMJ_1997_47_4_a7/

[1] Y. Cheng: On the existence of radial solutions of a nonlinear elliptic BVP in an annulus. Math. Nachr. 165 (1994), 61–77. | DOI | MR | Zbl

[2] Y. Cheng: On the existence of radial solutions of a nonlinear elliptic equation on the unit ball. Nonlinear Analysis, TMA, 24:3 (1995), 287–307. | MR | Zbl

[3] Y. Cheng: An eigenvalue problem for a quasilinear elliptic equation. U.U.M.D. Report NO:19, 1994.

[4] Ph. Clément, D. de Figueiredo, E. Mitidieri: Positive solutions of semilinear elliptic systems. Comm. P.D.E. 17 (1992), 923–940. | DOI | MR

[5] Ph. Clément, R. Manásevich, E. Mitidieri: Positive solutions of quasilinear elliptic systems via blow up. Comm. P.D.E. 18 (1993), 2071-2116. | MR

[6] R. Courant, D. Hilbert: Methods of Mathematical Physics II. Interscience, 1953. | MR

[7] R. Dalmasso: Positive solutions of nonlinear elliptic systems. Annl. Pol. Math. LVIII.2 (1993), 201–213. | DOI | MR | Zbl

[8] D. Gilbarg, N. S. Trudinger: Elliptic Partial Differential Equations of Second Order. Second edition, Springer-Verlag, 1992.

[9] J. Heinonen, T. Kilpelaninen, O. Martio: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford, University Press, 1993. | MR

[10] H. A. Levine: The role of critical exponents in blow-up theorems. SIAM Review 32:2 (1990), 262–288. | DOI | MR

[11] P. Lindqvist: On the equation div$(|\nabla u|^{p-2}\nabla u)+\lambda |u|^{p-2} u=0$. Proc. Amer. Math. Soci. 109 (1990), 157–164. | DOI | MR | Zbl

[12] P. Lions: On the existence of positive solutions of semilinear elliptic equations. SIAM Review 24 (1982), 441–467. | DOI | MR | Zbl

[13] M. Mitidieri: A Rellich type identity and applications. Comm. P.D.E. 18 (1993), 125–151. | DOI | MR | Zbl

[14] L. Peletier, R.C.M. van der Vorst: Existence and nonexistence of positive solutions of nonlinear elliptic systems and the biharmonic equations. Diff Interg. Equa. 5 (1992), 747–767. | MR

[15] S. Sakaguchi: Concavity property of solutions to some degenerate quasilinear elliptic Dirichlet problems. Ann. Scuola. Norm. Pisa 14 (1987), 403–421. | MR

[16] R.C.M. van der Vorst: Variational identities and applications to differential systems. Arch. rational Mech. Anal. 116c (1991), 375–398. | MR | Zbl