Descriptions of exceptional sets in the circles for functions from the Bergman space
Czechoslovak Mathematical Journal, Tome 47 (1997) no. 4, pp. 633-649
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $D$ be a domain in $\mathbb{C}^2$. For $w \in \mathbb{C} $, let $D_w = \lbrace z \in \mathbb{C} \mid (z,w) \in D \rbrace $. If $f$ is a holomorphic and square-integrable function in $D$, then the set $E(D,f)$ of all $w$ such that $f(.,w)$ is not square-integrable in $D_w$ is of measure zero. We call this set the exceptional set for $f$. In this note we prove that for every $0
Let $D$ be a domain in $\mathbb{C}^2$. For $w \in \mathbb{C} $, let $D_w = \lbrace z \in \mathbb{C} \mid (z,w) \in D \rbrace $. If $f$ is a holomorphic and square-integrable function in $D$, then the set $E(D,f)$ of all $w$ such that $f(.,w)$ is not square-integrable in $D_w$ is of measure zero. We call this set the exceptional set for $f$. In this note we prove that for every $0$,and every $G_\delta $-subset $E$ of the circle $C(0,r) = \lbrace z \in \mathbb{C} \mid | z | =r \rbrace $,there exists a holomorphic square-integrable function $f$ in the unit ball $B$ in $\mathbb{C}^2$ such that $E(B,f) = E.$
@article{CMJ_1997_47_4_a5,
author = {Jak\'obczak, Piotr},
title = {Descriptions of exceptional sets in the circles for functions from the {Bergman} space},
journal = {Czechoslovak Mathematical Journal},
pages = {633--649},
year = {1997},
volume = {47},
number = {4},
mrnumber = {1479310},
zbl = {0901.32006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1997_47_4_a5/}
}
Jakóbczak, Piotr. Descriptions of exceptional sets in the circles for functions from the Bergman space. Czechoslovak Mathematical Journal, Tome 47 (1997) no. 4, pp. 633-649. http://geodesic.mathdoc.fr/item/CMJ_1997_47_4_a5/
[1] P. Jakóbczak: The exceptional sets for functions from the Bergman space. Portugaliae Mathematica 50, No 1 (1993), 115–128. | MR
[2] P.Jakóbczak: The exceptional sets for functions of the Bergman space in the unit ball. Rend. Mat. Acc. Lincei s.9, 4 (1993), 79–85. | MR | Zbl
[3] J.Janas: On a theorem of Lebow and Mlak for several commuting operators. Studia Math. 76 (1983), 249–253. | DOI | MR
[4] B.W.Šabat: Introduction to Complex Analysis. Nauka, Moskva, 1969. (Russian) | MR | Zbl