The associated tensor norm to $(q,p)$-absolutely summing operators on $C(K)$-spaces
Czechoslovak Mathematical Journal, Tome 47 (1997) no. 4, pp. 627-631 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give an explicit description of a tensor norm equivalent on $C(K) \otimes F$ to the associated tensor norm $\nu _{qp}$ to the ideal of $(q,p)$-absolutely summing operators. As a consequence, we describe a tensor norm on the class of Banach spaces which is equivalent to the left projective tensor norm associated to $\nu _{qp}$.
We give an explicit description of a tensor norm equivalent on $C(K) \otimes F$ to the associated tensor norm $\nu _{qp}$ to the ideal of $(q,p)$-absolutely summing operators. As a consequence, we describe a tensor norm on the class of Banach spaces which is equivalent to the left projective tensor norm associated to $\nu _{qp}$.
Classification : 46B28, 46M05, 47B07, 47B10, 47L05, 47L20
@article{CMJ_1997_47_4_a4,
     author = {L\'opez Molina, J. A. and S\'anchez-P\'erez, E. A.},
     title = {The associated tensor norm to $(q,p)$-absolutely summing operators on $C(K)$-spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {627--631},
     year = {1997},
     volume = {47},
     number = {4},
     mrnumber = {1479309},
     zbl = {0903.46017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1997_47_4_a4/}
}
TY  - JOUR
AU  - López Molina, J. A.
AU  - Sánchez-Pérez, E. A.
TI  - The associated tensor norm to $(q,p)$-absolutely summing operators on $C(K)$-spaces
JO  - Czechoslovak Mathematical Journal
PY  - 1997
SP  - 627
EP  - 631
VL  - 47
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_1997_47_4_a4/
LA  - en
ID  - CMJ_1997_47_4_a4
ER  - 
%0 Journal Article
%A López Molina, J. A.
%A Sánchez-Pérez, E. A.
%T The associated tensor norm to $(q,p)$-absolutely summing operators on $C(K)$-spaces
%J Czechoslovak Mathematical Journal
%D 1997
%P 627-631
%V 47
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_1997_47_4_a4/
%G en
%F CMJ_1997_47_4_a4
López Molina, J. A.; Sánchez-Pérez, E. A. The associated tensor norm to $(q,p)$-absolutely summing operators on $C(K)$-spaces. Czechoslovak Mathematical Journal, Tome 47 (1997) no. 4, pp. 627-631. http://geodesic.mathdoc.fr/item/CMJ_1997_47_4_a4/

[1] A. Defant, K. Floret: Tensor norms and Operator Ideals. North-Holland Mathematics Studies 176. Amsterdam-London-New York-Tokyo, 1993. | MR

[2] J. T. Lapresté: Operateurs sommantes et factorization à travers les espaces $L^p$. Studia Math. 56 (1976), 47–83. | MR

[3] J. A. López Molina, E. A. Sánchez Pérez: Ideales de operadores absolutamente continuos. Rev. Real Acad. Ciencias Exactas, Fisicas y Naturales, Madrid 87 (1993), 349–378. | MR

[4] U. Matter: Absolutely continuous operators and super-reflexivity. Math. Nachr. 130 (1987), 193–216. | DOI | MR | Zbl

[5] U. Matter, H. Jarchow: Interpolative constructions for operator ideals. Note di Matematica VIII (1988), no. 1, 45–56. | MR

[6] B. Maurey: Sur certaines propriétés des opérateurs sommants. C. R. Acad. Sci. Paris A 277 (1973), 1053–1055. | MR | Zbl

[7] A. Pietsch: Operator Ideals. North-Holland Publ. Company, Amsterdam-New York-Oxford, 1980. | MR | Zbl

[8] G. Pisier: Factorization of operators through $L_{p,\infty }$ or $L_{p,1}$ and non-commutative generalizations. Math. Ann. 276 (1986), 105–136. | DOI | MR