A study of $q$-Laguerre polynomials through the $T_{k,q,x}$-operator
Czechoslovak Mathematical Journal, Tome 47 (1997) no. 4, pp. 619-626 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The present paper deals with certain generating functions and recurrence relations for $q$-Laguerre polynomials through the use of the $T_{k,q,x}$-operator introduced in an earlier paper [7].
The present paper deals with certain generating functions and recurrence relations for $q$-Laguerre polynomials through the use of the $T_{k,q,x}$-operator introduced in an earlier paper [7].
Classification : 26A33, 33C45, 33D45
@article{CMJ_1997_47_4_a3,
     author = {Khan, M. A.},
     title = {A study of $q${-Laguerre} polynomials through the $T_{k,q,x}$-operator},
     journal = {Czechoslovak Mathematical Journal},
     pages = {619--626},
     year = {1997},
     volume = {47},
     number = {4},
     mrnumber = {1479308},
     zbl = {0899.33007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1997_47_4_a3/}
}
TY  - JOUR
AU  - Khan, M. A.
TI  - A study of $q$-Laguerre polynomials through the $T_{k,q,x}$-operator
JO  - Czechoslovak Mathematical Journal
PY  - 1997
SP  - 619
EP  - 626
VL  - 47
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_1997_47_4_a3/
LA  - en
ID  - CMJ_1997_47_4_a3
ER  - 
%0 Journal Article
%A Khan, M. A.
%T A study of $q$-Laguerre polynomials through the $T_{k,q,x}$-operator
%J Czechoslovak Mathematical Journal
%D 1997
%P 619-626
%V 47
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_1997_47_4_a3/
%G en
%F CMJ_1997_47_4_a3
Khan, M. A. A study of $q$-Laguerre polynomials through the $T_{k,q,x}$-operator. Czechoslovak Mathematical Journal, Tome 47 (1997) no. 4, pp. 619-626. http://geodesic.mathdoc.fr/item/CMJ_1997_47_4_a3/

[1] W. A. Al-salam: Operational representation for the Laguerre and Hermite polynomials. Duke Math. Journal 31 (1964), 127–142. | MR

[2] W. A. Al-salam, L. Carlitz: Some orthogonal $q$-polynomials. Math. Nachr. 30 (1965), 47–61. | DOI | MR

[3] W. Hahn: Beitrage zur Theorie der Heineschen Reihen, Die 24 Integrale der hypergeometrischen $q$-Differenzengleichung, Das $q$-Analogen der Laplace Transformation. Math. Nachr. 2 (1949), 340–379. | DOI | MR

[4] M. A. Khan: Certain fractional $q$-integrals and $q$-derivatives. Nanta Mathematica 7 (1974), no. 1, 52–60. | MR | Zbl

[5] M. A. Khan: On $q$-Laguerre polynomials. Ganita 34 (1983), no. 1 and 2, 111–123. | MR | Zbl

[6] M. A. Khan: $q$-Analogue of certain operational formulae. Houston J. Math. 13 (1987), no. 1, pp. 75–82. | MR

[7] M. A. Khan: On a calculus for the $T_{k,q,x}$-operator. Mathematica Balkanica, New series 6 (1992), fasc. 1, pp. 83–90. | MR

[8] M. A. Khan: On some operational representations of $q$-polynomials. Czechoslovak Mathematical Journal 45 (1995), 457–464. | MR | Zbl

[9] M. A. Khan, A. H. Khan: On some characterizations of $q$-Bessel polynomials. Acta Math. Viet. 15 (1990), no. 1, pp. 55–59. | MR

[10] H. B. Mittal: Some generating functions. Univ. Lisbova Revista Fae. Ci A(2). Mat. 13 (1970), 43–51. | MR | Zbl

[11] E. D. Rainville: Special Functions. The MacMillan Co., New York (1960). | MR | Zbl

[12] L. J. Slater: Generalized Hypergeometric Functions. Cambridge University Press (1966). | MR | Zbl

[13] H. M. Srivastava, H. L. Manocha: A Treatise on Generating Functions. John Wiley and Sons (Halsted Press), New York, Ellis Horwood, Chichester, 1985. | MR