Angular limits of the integrals of the Cauchy type
Czechoslovak Mathematical Journal, Tome 47 (1997) no. 4, pp. 593-617 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Integrals of the Cauchy type extended over the boundary $\partial A$ of a general compact set $A$ in the complex plane are investigated. Necessary and sufficient conditions on $\partial A$ are established guaranteeing the existence of angular limits of these integrals at a fixed $z\in \partial A$ for all densities satisfying a Hölder-type condition at $z$.
Integrals of the Cauchy type extended over the boundary $\partial A$ of a general compact set $A$ in the complex plane are investigated. Necessary and sufficient conditions on $\partial A$ are established guaranteeing the existence of angular limits of these integrals at a fixed $z\in \partial A$ for all densities satisfying a Hölder-type condition at $z$.
Classification : 30E20
Keywords: integrals of Cauchy type; angular limits
@article{CMJ_1997_47_4_a2,
     author = {Kr\'al, Josef and Medkov\'a, Dagmar},
     title = {Angular limits of the integrals of the {Cauchy} type},
     journal = {Czechoslovak Mathematical Journal},
     pages = {593--617},
     year = {1997},
     volume = {47},
     number = {4},
     mrnumber = {1479307},
     zbl = {0899.30027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1997_47_4_a2/}
}
TY  - JOUR
AU  - Král, Josef
AU  - Medková, Dagmar
TI  - Angular limits of the integrals of the Cauchy type
JO  - Czechoslovak Mathematical Journal
PY  - 1997
SP  - 593
EP  - 617
VL  - 47
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_1997_47_4_a2/
LA  - en
ID  - CMJ_1997_47_4_a2
ER  - 
%0 Journal Article
%A Král, Josef
%A Medková, Dagmar
%T Angular limits of the integrals of the Cauchy type
%J Czechoslovak Mathematical Journal
%D 1997
%P 593-617
%V 47
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_1997_47_4_a2/
%G en
%F CMJ_1997_47_4_a2
Král, Josef; Medková, Dagmar. Angular limits of the integrals of the Cauchy type. Czechoslovak Mathematical Journal, Tome 47 (1997) no. 4, pp. 593-617. http://geodesic.mathdoc.fr/item/CMJ_1997_47_4_a2/

[1] K. Astala: Calderón’s problem for Lipschitz classes and the dimension of quasicircles. Revista Matemática Iberoamericana 4 (1988), 469–486. | DOI | MR | Zbl

[2] Ju. D. Burago, V. G. Maz’ya: Nekotoryje voprosy teorii potenciala i teorii funkcij dlja oblastěj s nereguljarnymi granicami. Zapiski Naučnych Seminarov LOMI 3 (1967). (Russian)

[3] M. Dont: Non-tangential limits of the double layer potentials. Časopis pro pěst. mat. 97 (1972), 231–258. | MR | Zbl

[4] H. Federer: The Gauss–Green theorem. Trans. Amer. Math. Soc. 58 (1945), 44–76. | DOI | MR | Zbl

[5] H. Federer: Geometric Measure Theory. Springer-Verlag, 1969. | MR | Zbl

[6] V. P. Havin, N. K. Nikolski: Linear and Complex Analysis Problem Book 3. Lecture Notes in Math., vols. 1573, 1574, Springer-Verlag, 1994. | MR

[7] J. Král: Integral Operators in Potential Theory. Lecture Notes in Math., vol. 823, Springer-Verlag, 1980. | DOI | MR

[8] J. Král: The Fredholm method in potential theory. Trans. Amer. Math. Soc. 125 (1966), 511–547. | DOI | MR

[9] J. Král: Ob uglovych preděl’nych značenijach integralov tipa Koši. Doklady AN SSSR 155 (1964), no. 1, 32–34. (Russian)

[10] J. Král, J. Lukeš: On the modified logarithmic potential. Czechoslov. Math. J. 21 (1971), 76–98. | MR

[11] J. Král, D. Medková: Angular limits of double layer potentials. Czechoslov. Math. J. 45 (1995), 267–292. | MR

[12] J. Lukeš: A note on integral of the Cauchy type. Comment. Math. Univ. Carolinae 9 (1968), 563–570. | MR

[13] I. D. Mačavariani: O graničnych značenijach logarifmičeskogo potenciala i integrala tipa Koši. Soobšč. Akad. Nauk. Gruz. SSR 69 (1973), 21–24. (Russian)

[14] I. D. Mačavariani: O nepreryvnosti osobogo integrala s jadrom Koši. Trudy Inst. Vyčisl. Matem. AN Gruz. SSR 25 (1985), 87–115. (Russian)

[15] V. G. Maz’ya: Boundary Integral Equations. Analysis IV, Encyklopaedia of Mathematical Science, vol. 27, Springer-Verlag, 1991.

[16] N. J. Muskhelišvili: Singuljarnyje integral’nyje uravněnija. Moscow, 1962. (Russian)

[17] S. Saks: Theory of the integral. Dover Publications, New York, 1964. | MR

[18] H. Watanabe: Double layer potentials for a bounded domain with fractal boundary. Abstracts of lectures delivered in International Conference on Potential Theory (August 13–20, 1994, Kouty, Czech Republic), p. 44. | Zbl

[19] W. P. Ziemer: Weakly Differentiable Functions. Springer-Verlag, 1989. | MR | Zbl