A supersolution-subsolution method for nonlinear biharmonic equations in $\mathbb{R}^N$
Czechoslovak Mathematical Journal, Tome 47 (1997) no. 4, pp. 749-768 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 35B45, 35J30, 35J40, 35J60
@article{CMJ_1997_47_4_a12,
     author = {Furusho, Yasuhiro and Kusano, Taka\^{s}i},
     title = {A supersolution-subsolution method for nonlinear biharmonic equations in $\mathbb{R}^N$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {749--768},
     year = {1997},
     volume = {47},
     number = {4},
     mrnumber = {1479317},
     zbl = {0899.35033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1997_47_4_a12/}
}
TY  - JOUR
AU  - Furusho, Yasuhiro
AU  - Kusano, Takaŝi
TI  - A supersolution-subsolution method for nonlinear biharmonic equations in $\mathbb{R}^N$
JO  - Czechoslovak Mathematical Journal
PY  - 1997
SP  - 749
EP  - 768
VL  - 47
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_1997_47_4_a12/
LA  - en
ID  - CMJ_1997_47_4_a12
ER  - 
%0 Journal Article
%A Furusho, Yasuhiro
%A Kusano, Takaŝi
%T A supersolution-subsolution method for nonlinear biharmonic equations in $\mathbb{R}^N$
%J Czechoslovak Mathematical Journal
%D 1997
%P 749-768
%V 47
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_1997_47_4_a12/
%G en
%F CMJ_1997_47_4_a12
Furusho, Yasuhiro; Kusano, Takaŝi. A supersolution-subsolution method for nonlinear biharmonic equations in $\mathbb{R}^N$. Czechoslovak Mathematical Journal, Tome 47 (1997) no. 4, pp. 749-768. http://geodesic.mathdoc.fr/item/CMJ_1997_47_4_a12/

[1] K. Akô and T. Kusano: On bounded solutions of second order elliptic differential equations. J. Fac. Sci. Univ. Tokyo, Sect. I 11 (1964), 29–37. | MR

[2] P. Drábek: Solvability and bifurcations of nonlinear equations. Longman, New York, 1992. | MR

[3] S. Fučík: Solvability of nonlinear equations and boundary value problems. Reidel Publishing Company, Doudrecht-Boston-London, 1980. | MR

[4] S. Fučík and A. Kufner: Nonlinear differential equations. Elsevier, Amsterdam-Oxford-New York, 1980. | MR

[5] N. Fukagai: On decaying entire solutions of second order sublinear elliptic equations. Hiroshima Math. J. 14 (1984), 551–562. | DOI | MR

[6] Y. Furusho: Existence of positive entire solutions of weakly coupled semilinear elliptic systems. Proc. Royal Soc. Edinburgh Sect. A 120 (1992), 79–91. | MR

[7] Y. Furusho and T. Kusano: Existence of positive entire solutions for higher order quasilinear elliptic equations. J. Math. Soc. Japan 46 (1994), 449–465. | DOI | MR

[8] Y. Furusho and T. Kusano: Symmetric positive entire solutions for nonlinear biharmonic equations. Differentsial’nye Uravneniya 31(2) (1995), 296–311. | MR

[9] T. Kusano, M. Naito and C.A. Swanson: Radial entire solutions of even order semilinear elliptic equations. Canad. J. Math. 40 (1988), 1281–1300. | DOI | MR

[10] T. Kusano and S. Oharu: Bounded entire solutions of second order semilinear elliptic equations with application to a parabolic initial value problem. Indiana Univ. Math. J. 34 (1985), 85–95. | DOI | MR

[11] T. Kusano and C.A. Swanson: A general method for quasilinear elliptic problems in $\mathbb{R}^N$. J. Math. Anal. Appl. 167 (1992), 414–428. | DOI | MR

[12] W.-M. Ni: On the elliptic equation $\Delta u + K(x)u^{(n+2)/(n-2)} = 0$, its generalizations, and applications in geometry. Indiana Univ. Math. J. 31 (1982), 493–529. | DOI | MR

[13] E.S. Noussair: On the existence of solutions of semilinear elliptic boundary value problems. J. Differential Equations 34 (1979), 482–495. | DOI | MR