Some properties of third order differential operators
Czechoslovak Mathematical Journal, Tome 47 (1997) no. 4, pp. 729-748 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Consider the third order differential operator $L$ given by \[L(\cdot )\equiv \,\frac {1}{a_3(t)}\frac {\mbox{d}}{\mbox{d} t}\frac {1}{a_2(t)}\frac {\mbox{d}}{\mbox{d} t} \frac {1}{a_1(t)}\frac {\mbox{d}}{\mbox{d} t}\,(\cdot ) \] and the related linear differential equation $L(x)(t)+x(t)=0$. We study the relations between $L$, its adjoint operator, the canonical representation of $L$, the operator obtained by a cyclic permutation of coefficients $a_i$, $ i=1,2,3$, in $L$ and the relations between the corresponding equations. We give the commutative diagrams for such equations and show some applications (oscillation, property A).
Consider the third order differential operator $L$ given by \[L(\cdot )\equiv \,\frac {1}{a_3(t)}\frac {\mbox{d}}{\mbox{d} t}\frac {1}{a_2(t)}\frac {\mbox{d}}{\mbox{d} t} \frac {1}{a_1(t)}\frac {\mbox{d}}{\mbox{d} t}\,(\cdot ) \] and the related linear differential equation $L(x)(t)+x(t)=0$. We study the relations between $L$, its adjoint operator, the canonical representation of $L$, the operator obtained by a cyclic permutation of coefficients $a_i$, $ i=1,2,3$, in $L$ and the relations between the corresponding equations. We give the commutative diagrams for such equations and show some applications (oscillation, property A).
Classification : 34A30, 34C10, 34C20
Keywords: Differential operators; linear differential equation of third order; canonical forms; adjoint equation; cyclic permutation; oscillatory solution; Kneser solution; property $\mathrm A$
@article{CMJ_1997_47_4_a11,
     author = {Cecchi, M. and Do\v{s}l\'a, Z. and Marini, M.},
     title = {Some properties of third order differential operators},
     journal = {Czechoslovak Mathematical Journal},
     pages = {729--748},
     year = {1997},
     volume = {47},
     number = {4},
     mrnumber = {1479316},
     zbl = {0903.34032},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1997_47_4_a11/}
}
TY  - JOUR
AU  - Cecchi, M.
AU  - Došlá, Z.
AU  - Marini, M.
TI  - Some properties of third order differential operators
JO  - Czechoslovak Mathematical Journal
PY  - 1997
SP  - 729
EP  - 748
VL  - 47
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_1997_47_4_a11/
LA  - en
ID  - CMJ_1997_47_4_a11
ER  - 
%0 Journal Article
%A Cecchi, M.
%A Došlá, Z.
%A Marini, M.
%T Some properties of third order differential operators
%J Czechoslovak Mathematical Journal
%D 1997
%P 729-748
%V 47
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_1997_47_4_a11/
%G en
%F CMJ_1997_47_4_a11
Cecchi, M.; Došlá, Z.; Marini, M. Some properties of third order differential operators. Czechoslovak Mathematical Journal, Tome 47 (1997) no. 4, pp. 729-748. http://geodesic.mathdoc.fr/item/CMJ_1997_47_4_a11/

[1] Bartušek M.: Asymptotic properties of oscillatory solutions of differential equations of the $n$-th order. Folia Fac. Sci. Nat. Univ. Brunensis Masarykianae (1992). | MR

[2] Bartušek, M., Došlá Z.: Oscillatory criteria for nonlinear third order differential equations with quasiderivatives. Diff. equation  and Dynam. Syst. 3 (1995), 251–268. | MR

[3] Cecchi M.: Oscillation criteria for a class of third order linear differential equations. Boll. Un. Mat. Ital., VI, 2–C (1983), 297–306. | MR | Zbl

[4] Cecchi M.: Sul comportamento delle soluzioni di una classe di equazioni differenziali lineari del terzo ordine in caso di oscillazione. Boll. Un. Mat. Ital., VI, 4–C 4 (1985), 71–85.

[5] Cecchi M., Marini M.: Oscillation properties of third order nonlinear differential equation. Nonlinear Analysis, Th. M. Appl. 15 (1990), 141–153. | DOI

[6] Cecchi M., Došlá Z., Marini M., Villari G.: On the qualitative behavior of solutions of third order differential equations. J. Math. Anal. Appl. 197 (1996), 749–766. | DOI | MR

[7] Cecchi M., Marini M., Villari G.: On a cyclic disconjugated operator associated to linear differential equations. Annali Mat. Pura Appl. IV CLXX (1996), 297–309. | MR

[8] Coppel W.A.: Disconjugacy. Springer-Verlag 1971, Lectures Notes in Math. 220. | MR | Zbl

[9] Dolan J. M.: On the relationship between the oscillatory behavior of a linear third-order differential equation and its adjoint. J. Diff. Equat. 7 (1970), 367–388. | DOI | MR | Zbl

[10] Elias U.: Nonoscillation and eventual disconjugacy. Proc. Amer.Math. Soc. 66 (1977), 269–275. | DOI | MR | Zbl

[11] Erbe L.: Oscillation, nonoscillation, and asymptotic behavior for third order nonlinear differential equations. Annali Mat. Pura Appl. IV, 110 (1976), 373–391. | DOI | MR | Zbl

[12] Gaudenzi M.: On the Sturm-Picone theorem for $n$th–order differential equations. Siam J. Math. Anal. 21 (1990), 980–994. | DOI | MR

[13] Greguš M.: Third Order Linear Differential Equations. D. Reidel Publ. Comp., Dordrecht, Boston, Lancaster, Tokyo, 1987. | MR

[14] Hanan M.: Oscillation criteria for third-order linear differential equation. Pacific J. Math. 11 (1961), 919-944. | DOI | MR

[15] Chanturia T.A.: On oscillatory properties of systems of nonlinear ordinary differential equations (Russian). Trudy universiteta prikladnoj matematiky, Tbilisi 14 (1983), 163–203. | MR

[16] Kiguradze I. T., Chanturia T.A.: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Kluwer Academic Publishers, Dordrecht-Boston-London (1993, 432 pp). | MR

[17] Kusano T., Naito M., Tanaka K.: Oscillatory and asymptotic behavior of solutions of a class of linear ordinary differential equations. Proc. Royal Soc. Edinburgh 90A (1981), 24–40. | MR

[18] Lazer A. C.: The behaviour of solutions of the differential equation $y^{\prime \prime \prime }+p(x)y^{\prime }+q(x)y=0$. Pacific J. Math. 17 (1966), 435–466. | MR

[19] Ohriska J.: Oscillatory and asymptotic properties of third and fourth order linear differential equations. Czech. Math. J. 39 (114) (1989), 215–224. | MR | Zbl

[20] Swanson C. A.: Comparison and Oscillation Theory of Linear Differential Equations. Acad. Press, New York, 1968. | MR | Zbl

[21] Švec M.: Behaviour of nonoscillatory solutions of some nonlinear differential equations. Acta Math. Univ. Comenianae 34 (1980), 115–130.

[22] Trench W. F.: Canonical forms and principal systems for general disconjugate equations. TAMS 189 (1974), 319–327. | DOI | MR | Zbl