@article{CMJ_1997_47_3_a8,
author = {Cain, Bryan and Hershkowitz, Daniel and Schneider, Hans},
title = {Theorems of the alternative for cones and {Lyapunov} regularity of matrices},
journal = {Czechoslovak Mathematical Journal},
pages = {487--499},
year = {1997},
volume = {47},
number = {3},
mrnumber = {1461427},
zbl = {0902.15011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1997_47_3_a8/}
}
TY - JOUR AU - Cain, Bryan AU - Hershkowitz, Daniel AU - Schneider, Hans TI - Theorems of the alternative for cones and Lyapunov regularity of matrices JO - Czechoslovak Mathematical Journal PY - 1997 SP - 487 EP - 499 VL - 47 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMJ_1997_47_3_a8/ LA - en ID - CMJ_1997_47_3_a8 ER -
Cain, Bryan; Hershkowitz, Daniel; Schneider, Hans. Theorems of the alternative for cones and Lyapunov regularity of matrices. Czechoslovak Mathematical Journal, Tome 47 (1997) no. 3, pp. 487-499. http://geodesic.mathdoc.fr/item/CMJ_1997_47_3_a8/
[1] G. P. Barker, A. Berman, and R. J. Plemmons: Positive diagonal solutions to the Lyapunov equations. Lin. Multilin. Alg. 5 (1978), 249–256. | DOI | MR
[2] G. P. Barker, B. S. Tam, and Norbil Davila: A geometric Gordan-Stiemke theorem. Lin. Alg. Appl. 61 (1984), 83–89. | DOI | MR
[3] A. Ben-Israel: Linear equations and inequalities on finite dimensional, real or complex, vector spaces: A unified theory. Math. Anal. Appl. 27 (1969), 367–389. | DOI | MR | Zbl
[4] A. Berman: Cones, Matrices and Mathematical Programming. Lecture Notes in Economics and Mathematical Systems, Vol. 79, Springer-Verlag, 1973. | MR | Zbl
[5] A. Berman and A. Ben-Israel: More on linear inequalities with application to matrix theory. J. Math. Anal. Appl. 33 (1971), 482–496. | DOI | MR
[6] A. Berman and R. C. Ward: ALPS: Classes of stable and semipositive matrices. Lin. Alg. Appl. 21 (1978), 163–174. | DOI | MR
[7] D. H. Carlson, D. Hershkowitz, and D. Shasha: Block diagonal semistability factors and Lyapunov semistability of block triangular matrices. Lin. Alg. Appl. 172 (1992), 1–25. | DOI | MR
[8] D. H. Carlson and H. Schneider: Inertia theorems for matrices: the semidefinite case. J. Math. Anal. Appl. 6 (1963), 430–436. | DOI | MR
[9] A. Ja. Dubovickii and A.A. Miljutin: Extremum problems with certain constraints. Soviet Math. 4 (1963), 759–762. | MR
[10] D. Gale: The theory of linear economic models. McGraw-Hill, 1960. | MR
[11] I.V. Girsanov: Lectures on Mathematical Theory of Extremum Problems [sic]. Lecture Notes in Economics and Mathematical Systems, Vol. 67, Springer-Verlag, 1972. | MR
[12] D. Hershkowitz and H. Schneider: Semistability factors and semifactors. Contemp. Math. 47 (1985), 203–216. | DOI | MR
[13] J. L. Kelley, I. Namioka, et al.: Linear Topological Spaces. van Nostrand, 1963. | MR
[14] A. N. Lyapunov: Le problème général de la stabilité du mouvement. Ann. Math. Studies 17 (1949), Princeton University Press.
[15] H. Nikaido: Convex Structures and Economic Theory. Mathematics in Science and Engineering, Vol. 51, Academic, 1968. | MR | Zbl
[16] A. Ostrowski and H. Schneider: Some theorems on the inertia of general matrices. J. Math. Analysis and Appl. 4 (1962), 72–84. | DOI | MR
[17] R. T. Rockafellar: Convex Analysis. Princeton University Press, 1970. | MR | Zbl
[18] B. D. Saunders and H. Schneider: Applications of the Gordan-Stiemke theorem in combinatorial matrix theory. SIAM Rev. 21 (1979), 528–541. | DOI | MR
[19] O. Taussky: Matrices $C$ with $C^n \rightarrow 0$. J. Alg. 1 (1964), 1–10. | MR | Zbl
[20] E. Zeidler: Nonlinear functional analysis and its applications III: Variational methods and optimation. Springer-Verlag, 1985. | MR