Reaction-diffusion systems: stabilizing effect of conditions described by quasivariational inequalities
Czechoslovak Mathematical Journal, Tome 47 (1997) no. 3, pp. 469-486 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Reaction-diffusion systems are studied under the assumptions guaranteeing diffusion driven instability and arising of spatial patterns. A stabilizing influence of unilateral conditions given by quasivariational inequalities to this effect is described.
Reaction-diffusion systems are studied under the assumptions guaranteeing diffusion driven instability and arising of spatial patterns. A stabilizing influence of unilateral conditions given by quasivariational inequalities to this effect is described.
Classification : 35B32, 35B35, 35J85, 35K57, 47A75, 92D25
Keywords: reaction-diffusion systems; unilateral conditions; bifurcation; quasivariational inequalities; spatial patterns
@article{CMJ_1997_47_3_a7,
     author = {Ku\v{c}era, Milan},
     title = {Reaction-diffusion systems: stabilizing effect of conditions described by quasivariational inequalities},
     journal = {Czechoslovak Mathematical Journal},
     pages = {469--486},
     year = {1997},
     volume = {47},
     number = {3},
     mrnumber = {1461426},
     zbl = {0898.35010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1997_47_3_a7/}
}
TY  - JOUR
AU  - Kučera, Milan
TI  - Reaction-diffusion systems: stabilizing effect of conditions described by quasivariational inequalities
JO  - Czechoslovak Mathematical Journal
PY  - 1997
SP  - 469
EP  - 486
VL  - 47
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_1997_47_3_a7/
LA  - en
ID  - CMJ_1997_47_3_a7
ER  - 
%0 Journal Article
%A Kučera, Milan
%T Reaction-diffusion systems: stabilizing effect of conditions described by quasivariational inequalities
%J Czechoslovak Mathematical Journal
%D 1997
%P 469-486
%V 47
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_1997_47_3_a7/
%G en
%F CMJ_1997_47_3_a7
Kučera, Milan. Reaction-diffusion systems: stabilizing effect of conditions described by quasivariational inequalities. Czechoslovak Mathematical Journal, Tome 47 (1997) no. 3, pp. 469-486. http://geodesic.mathdoc.fr/item/CMJ_1997_47_3_a7/

[1] P. Drábek, M. Kučera and M. Míková: Bifurcation points of reaction-diffusion systems with unilateral conditions. Czechoslovak Math. J. 35 (1985), 639–660. | MR

[2] P. Drábek, M. Kučera: Eigenvalues of inequalities of reaction-difusion type and destabilizing effect of unilateral conditions. Czechoslovak Math. J. 36 (1986), 116–130. | MR

[3] P. Drábek, M. Kučera: Reaction-diffusion systems: Destabilizing effect of unilateral conditions. Nonlinear Analysis, Theory, Methods, Applications 12 (1988), 1173–1192. | MR

[4] S. Fučík and A. Kufner: Nonlinear Differential Equations. Elsevier, Amsterdam, 1980. | MR

[5] M. Kučera: Stability and bifurcation problems for reaction-diffusion system with unilateral conditions. Equadiff 6, Vosmanský, J. – Zlámal, M. (eds.), Brno, Universita J. E. Purkyně, 1986, pp. 227–234. | MR

[6] M. Kučera, M. Bosák: Bifurcation for quasi-variational inequalities of reaction-diffusion type. Stability and Applied Analysis of Continuous Media, Pitagora, Bologna, Vol. 3, No. 2, 1993, pp. 111–127.

[7] M. Kučera: Bifurcation of solutions to reaction-diffusion system with unilateral conditions. Navier-Stokes Equations and Related Nonlinear Problems, A. Sequeira (ed.), Plenum Press, New York, 1995, pp. 307–322. | MR

[8] M. Kučera: Reaction-diffusion systems: Bifurcation and stabilizing effect of unilateral conditions given by inclusions. Nonlin. Anal., T. M. A. 27 (1996), no. 3, 249–260. | DOI | MR

[9] J.L. Lions, E. Magenes: Problèmes aux limits non homogènes. Dunod, Paris, 1968.

[10] M. Mimura, Y. Nishiura and M. Yamaguti: Some diffusive prey and predator systems and their bifurcation problems. Ann. N.Y. Acad. Sci. 316 (1979), 490–521. | DOI | MR

[11] U. Mosco: Implicit variational problems and quasi variational inequalities. Nonlinear Operators and the calculus of Variations (Summer School, Univ. Libre Bruxelles, Brussels), Lecture Notes in Math., Vol. 543, Springer Berlin, pp. 83–156. | MR | Zbl

[12] Y. Nishiura: Global structure of bifurcating solutions of some reaction-diffusion systems. SIAM J. Math. Analysis 13 (1982), 555–593. | DOI | MR | Zbl

[13] P. Quittner: Bifurcation points and eigenvalues of inequalities of reaction-diffusion type. J. reine angew. Math. 380 (1987), 1–13. | MR | Zbl

[14] D. H. Sattinger: Topics in Stability and Bifurcation Theory. Lecture Notes in Mathematics 309, Springer-Verlag, Berlin-Heidelberg-New York, 1973. | MR | Zbl

[15] E. Zarantonello: Projections on convex sets in Hilbert space and spectral theory. Contributions to Nonlinear Functional Analysis, E. H. Zarantonello (ed.), Academic Press, New York, 1971. | Zbl