On the classification and toughness of generalized permutation star-graphs
Czechoslovak Mathematical Journal, Tome 47 (1997) no. 3, pp. 431-452 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We use an algebraic method to classify the generalized permutation star-graphs, and we use the classification to determine the toughness of all generalized permutation star-graphs.
We use an algebraic method to classify the generalized permutation star-graphs, and we use the classification to determine the toughness of all generalized permutation star-graphs.
Classification : 05C35, 05C40, 05C75
@article{CMJ_1997_47_3_a4,
     author = {Chao, Chong-Yun and Han, Shao-cen},
     title = {On the classification and toughness of generalized permutation star-graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {431--452},
     year = {1997},
     volume = {47},
     number = {3},
     mrnumber = {1461423},
     zbl = {0898.05033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1997_47_3_a4/}
}
TY  - JOUR
AU  - Chao, Chong-Yun
AU  - Han, Shao-cen
TI  - On the classification and toughness of generalized permutation star-graphs
JO  - Czechoslovak Mathematical Journal
PY  - 1997
SP  - 431
EP  - 452
VL  - 47
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_1997_47_3_a4/
LA  - en
ID  - CMJ_1997_47_3_a4
ER  - 
%0 Journal Article
%A Chao, Chong-Yun
%A Han, Shao-cen
%T On the classification and toughness of generalized permutation star-graphs
%J Czechoslovak Mathematical Journal
%D 1997
%P 431-452
%V 47
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_1997_47_3_a4/
%G en
%F CMJ_1997_47_3_a4
Chao, Chong-Yun; Han, Shao-cen. On the classification and toughness of generalized permutation star-graphs. Czechoslovak Mathematical Journal, Tome 47 (1997) no. 3, pp. 431-452. http://geodesic.mathdoc.fr/item/CMJ_1997_47_3_a4/

[1] Chao, C.Y.: On groups and graphs. Trans. Amer. Math. Soc. 118 (1965), 488–497. | DOI | MR | Zbl

[2] Chao, C.Y.: On the classification of symmetric graphs with a prime number of vertices. Trans. Amer. Math. Soc. 158 (1971), 247–257. | DOI | MR | Zbl

[3] Chartrand, G. and Harary, F.: Planar permutation graphs. Ann. Inst. Henri Poincaré III 4 (1967), 433–438. | MR

[4] Chvátal, V.: Toughness graphs and Hamiltonian circuits. Discrete Math 5 (1973), 215–228. | DOI

[5] Dörfler, W.: Automorphisms and Isomorphisms of Permutation Graphs. Colloques Inter., C.N.R.S., Problemes Combinatorics et Theorie des Graphs vol. 260, 1978, pp. 109–110. | MR

[6] Dörfler, W.: On mapping graphs and permutation graphs. Math. Slovaca 3. 28 (1978), 277–288. | MR

[7] Frucht, R.: Die Gruppe des Petersenschen Graphen und der Kantensysteme der regulären Polyeder. Commentarii Mathematici Helvetici 9 (1938), 217–223. | DOI

[8] Holton, D.A. and Stacey, K.C.: Some problems in permutation graphs. Lecture Notes in Mathematics 452, In: Combinatorial Mathematics III, Springer-Verlag, Berlin, 1975, pp. 143–155. | MR

[9] Ringeisen, R.: On cycle permutation graphs. Discrete Math. 51 (1984), 265–275. | DOI | MR | Zbl

[10] Stueckle, S.: On natural isomorphims of cycle permutation graphs. Graphs and Combinatorics 4 (1988), . | DOI | MR