Keywords: $R_\delta $-set; homotopic; contractible; evolution triple; evolution inclusion; compact embedding; optimal control
@article{CMJ_1997_47_3_a2,
author = {Papageorgiou, Nikolaos S.},
title = {Topological properties of the solution set of a class of nonlinear evolutions inclusions},
journal = {Czechoslovak Mathematical Journal},
pages = {409--424},
year = {1997},
volume = {47},
number = {3},
mrnumber = {1461421},
zbl = {0898.35011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1997_47_3_a2/}
}
TY - JOUR AU - Papageorgiou, Nikolaos S. TI - Topological properties of the solution set of a class of nonlinear evolutions inclusions JO - Czechoslovak Mathematical Journal PY - 1997 SP - 409 EP - 424 VL - 47 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMJ_1997_47_3_a2/ LA - en ID - CMJ_1997_47_3_a2 ER -
Papageorgiou, Nikolaos S. Topological properties of the solution set of a class of nonlinear evolutions inclusions. Czechoslovak Mathematical Journal, Tome 47 (1997) no. 3, pp. 409-424. http://geodesic.mathdoc.fr/item/CMJ_1997_47_3_a2/
[1] K. C. Chang: The obstacle problem and partial differential equations with discontinuous nonlinearities. Comm. Pure and Appl. Math. 33 (1980), 117–146. | DOI | MR | Zbl
[2] F. S. DeBlasi, J. Myjak: On the solution sets for differential inclusions. Bull. Polish. Acad. Sci. 33 (1985), 17–23. | MR
[3] K. Deimling, M. R. M. Rao: On solution sets of multivalued differential equations. Applicable Analysis 30 (1988), 129–135. | DOI | MR
[4] J. Dugundji: Topology. Allyn and Bacon, Inc., Boston, 1966. | MR | Zbl
[5] C. Himmelberg: Precompact contractions of metric uniformities and the continuity of $F(t,x)$. Rend. Sem. Matematico Univ. Padova 50 (1973), 185–188. | MR
[6] C. Himmelberg, F. Van Vleck: A note on the solution sets of differential inclusions. Rocky Mountain J. Math 12 (1982), 621–625. | DOI | MR
[7] D. M. Hyman: On decreasing sequences of compact absolute retracts. Fund. Math. 64 (1969), 91–97. | DOI | MR | Zbl
[8] A. Lasota, J. Yorke: The generic property of existence of solutions of differential equations on Banach spaces. J. Diff. Equations 13 (1973), 1–12. | DOI | MR
[9] N. S. Papageorgiou: Optimal control of nonlinear evolution inclusions. J. Optim. Theory Appl. 67 (1990), 321–357. | DOI | MR | Zbl
[10] N. S. Papageorgiou: Convergence theorems for Banach space valued integrable multifunctions. Intern. J. Math and Math.Sci. 10 (1987), 433–442. | DOI | MR | Zbl
[11] N. S. Papageorgiou: On the solution set of differential inclusions in Banach spaces. Applicable Anal. 25 (1987), 319–329. | DOI | MR
[12] N. S. Papageorgiou: Relaxability and well-posedness for infinite dimensional optimal control problems. Problems of Control and information Theory 20 (1991), 205–218. | MR | Zbl
[13] L. Rybinski: On Caratheodory type selections. Fund. Math. CXXV (1985), 187–193. | MR | Zbl
[14] D. Wagner: Survey of measurable selection theorems. SIAM J. Control and Optim. 15 (1977), 859–903. | DOI | MR | Zbl
[15] J. Yorke: Spaces of solutions. Lecture Notes on Operations Research and Math. Economics 12 (1969), Springer, New York, 383–403. | MR | Zbl
[16] E. Zeidler: Nonlinear Functional Analysis and its Applications II. Springer, New York, 1990. | MR | Zbl