Topological properties of the solution set of a class of nonlinear evolutions inclusions
Czechoslovak Mathematical Journal, Tome 47 (1997) no. 3, pp. 409-424 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the paper we study the topological structure of the solution set of a class of nonlinear evolution inclusions. First we show that it is nonempty and compact in certain function spaces and that it depends in an upper semicontinuous way on the initial condition. Then by strengthening the hypothesis on the orientor field $F(t,x)$, we are able to show that the solution set is in fact an $R_\delta $-set. Finally some applications to infinite dimensional control systems are also presented.
In the paper we study the topological structure of the solution set of a class of nonlinear evolution inclusions. First we show that it is nonempty and compact in certain function spaces and that it depends in an upper semicontinuous way on the initial condition. Then by strengthening the hypothesis on the orientor field $F(t,x)$, we are able to show that the solution set is in fact an $R_\delta $-set. Finally some applications to infinite dimensional control systems are also presented.
Classification : 34G20, 34H05, 35B30, 35B37, 35R45, 49A20, 49J24
Keywords: $R_\delta $-set; homotopic; contractible; evolution triple; evolution inclusion; compact embedding; optimal control
@article{CMJ_1997_47_3_a2,
     author = {Papageorgiou, Nikolaos S.},
     title = {Topological properties of the solution set of a class of nonlinear evolutions inclusions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {409--424},
     year = {1997},
     volume = {47},
     number = {3},
     mrnumber = {1461421},
     zbl = {0898.35011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1997_47_3_a2/}
}
TY  - JOUR
AU  - Papageorgiou, Nikolaos S.
TI  - Topological properties of the solution set of a class of nonlinear evolutions inclusions
JO  - Czechoslovak Mathematical Journal
PY  - 1997
SP  - 409
EP  - 424
VL  - 47
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_1997_47_3_a2/
LA  - en
ID  - CMJ_1997_47_3_a2
ER  - 
%0 Journal Article
%A Papageorgiou, Nikolaos S.
%T Topological properties of the solution set of a class of nonlinear evolutions inclusions
%J Czechoslovak Mathematical Journal
%D 1997
%P 409-424
%V 47
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_1997_47_3_a2/
%G en
%F CMJ_1997_47_3_a2
Papageorgiou, Nikolaos S. Topological properties of the solution set of a class of nonlinear evolutions inclusions. Czechoslovak Mathematical Journal, Tome 47 (1997) no. 3, pp. 409-424. http://geodesic.mathdoc.fr/item/CMJ_1997_47_3_a2/

[1] K. C. Chang: The obstacle problem and partial differential equations with discontinuous nonlinearities. Comm. Pure and Appl. Math. 33 (1980), 117–146. | DOI | MR | Zbl

[2] F. S. DeBlasi, J. Myjak: On the solution sets for differential inclusions. Bull. Polish. Acad. Sci. 33 (1985), 17–23. | MR

[3] K. Deimling, M. R. M. Rao: On solution sets of multivalued differential equations. Applicable Analysis 30 (1988), 129–135. | DOI | MR

[4] J. Dugundji: Topology. Allyn and Bacon, Inc., Boston, 1966. | MR | Zbl

[5] C. Himmelberg: Precompact contractions of metric uniformities and the continuity of $F(t,x)$. Rend. Sem. Matematico Univ. Padova 50 (1973), 185–188. | MR

[6] C. Himmelberg, F. Van Vleck: A note on the solution sets of differential inclusions. Rocky Mountain J. Math 12 (1982), 621–625. | DOI | MR

[7] D. M. Hyman: On decreasing sequences of compact absolute retracts. Fund. Math. 64 (1969), 91–97. | DOI | MR | Zbl

[8] A. Lasota, J. Yorke: The generic property of existence of solutions of differential equations on Banach spaces. J. Diff. Equations 13 (1973), 1–12. | DOI | MR

[9] N. S. Papageorgiou: Optimal control of nonlinear evolution inclusions. J. Optim. Theory Appl. 67 (1990), 321–357. | DOI | MR | Zbl

[10] N. S. Papageorgiou: Convergence theorems for Banach space valued integrable multifunctions. Intern. J. Math and Math.Sci. 10 (1987), 433–442. | DOI | MR | Zbl

[11] N. S. Papageorgiou: On the solution set of differential inclusions in Banach spaces. Applicable Anal. 25 (1987), 319–329. | DOI | MR

[12] N. S. Papageorgiou: Relaxability and well-posedness for infinite dimensional optimal control problems. Problems of Control and information Theory 20 (1991), 205–218. | MR | Zbl

[13] L. Rybinski: On Caratheodory type selections. Fund. Math. CXXV (1985), 187–193. | MR | Zbl

[14] D. Wagner: Survey of measurable selection theorems. SIAM J. Control and Optim. 15 (1977), 859–903. | DOI | MR | Zbl

[15] J. Yorke: Spaces of solutions. Lecture Notes on Operations Research and Math. Economics 12 (1969), Springer, New York, 383–403. | MR | Zbl

[16] E. Zeidler: Nonlinear Functional Analysis and its Applications II. Springer, New York, 1990. | MR | Zbl