Another Perron type integration in $n$ dimensions as an extension of integration of stepfunctions
Czechoslovak Mathematical Journal, Tome 47 (1997) no. 3, pp. 557-575 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For a new Perron-type integral a concept of convergence is introduced such that the limit $f$ of a sequence of integrable functions $f_k$, $ k \in \mathbb N$ is integrable and any integrable $f$ is the limit of a sequence of stepfunctions $g_k$, $ k \in \mathbb N$.
For a new Perron-type integral a concept of convergence is introduced such that the limit $f$ of a sequence of integrable functions $f_k$, $ k \in \mathbb N$ is integrable and any integrable $f$ is the limit of a sequence of stepfunctions $g_k$, $ k \in \mathbb N$.
Classification : 26A39, 26B99
@article{CMJ_1997_47_3_a13,
     author = {Jarn{\'\i}k, Ji\v{r}{\'\i} and Kurzweil, Jaroslav},
     title = {Another {Perron} type integration in $n$ dimensions as an extension of integration of stepfunctions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {557--575},
     year = {1997},
     volume = {47},
     number = {3},
     mrnumber = {1461432},
     zbl = {0902.26006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1997_47_3_a13/}
}
TY  - JOUR
AU  - Jarník, Jiří
AU  - Kurzweil, Jaroslav
TI  - Another Perron type integration in $n$ dimensions as an extension of integration of stepfunctions
JO  - Czechoslovak Mathematical Journal
PY  - 1997
SP  - 557
EP  - 575
VL  - 47
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_1997_47_3_a13/
LA  - en
ID  - CMJ_1997_47_3_a13
ER  - 
%0 Journal Article
%A Jarník, Jiří
%A Kurzweil, Jaroslav
%T Another Perron type integration in $n$ dimensions as an extension of integration of stepfunctions
%J Czechoslovak Mathematical Journal
%D 1997
%P 557-575
%V 47
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_1997_47_3_a13/
%G en
%F CMJ_1997_47_3_a13
Jarník, Jiří; Kurzweil, Jaroslav. Another Perron type integration in $n$ dimensions as an extension of integration of stepfunctions. Czechoslovak Mathematical Journal, Tome 47 (1997) no. 3, pp. 557-575. http://geodesic.mathdoc.fr/item/CMJ_1997_47_3_a13/

[1] J. Kurzweil and J. Jarník: Perron-type integration on $n$-dimensional intervals as an extension of integration of stepfunctions by strong equiconvergence. Czechosl. Math. J. 46 (121) (1996), 1–20. | MR

[2] J. Jarník and J. Kurzweil: Perron-type integration on $n$-dimensional intervals and its properties. Czechosl. Math. J. 45 (1995), 79–106. | MR

[3] J. Kurzweil: Nichtabsolut konvergente Integrale. Teubner, Leipzig, 1980. | MR | Zbl

[4] E. J. McShane: A Riemann-type integral that includes Lebesgue-Stieltjes, Bochner and stochastic integrals. Mem. Amer. Math. Soc. 88 (1969), . | MR | Zbl

[5] J. Mawhin: Generalized multiple Perron integrals and the Green-Goursat theorem for differentiable vector fields. Czechosl. Math. J. 31 (1981), 614–632. | MR | Zbl

[6] E. J. McShane: Unified Integration. Academic Press, 1983. | MR | Zbl