Vector-valued pseudo almost periodic functions
Czechoslovak Mathematical Journal, Tome 47 (1997) no. 3, pp. 385-394 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Vector-valued pseudo almost periodic functions are defined and their properties are investigated. The vector-valued functions contain many known functions as special cases. A unique decomposition theorem is given to show that a vector-valued pseudo almost periodic function is a sum of an almost periodic function and an ergodic perturbation.
Vector-valued pseudo almost periodic functions are defined and their properties are investigated. The vector-valued functions contain many known functions as special cases. A unique decomposition theorem is given to show that a vector-valued pseudo almost periodic function is a sum of an almost periodic function and an ergodic perturbation.
Classification : 42A75, 43A60
Keywords: almost periodic functions pseudo almost periodic functions; pseudo almost periodic functions
@article{CMJ_1997_47_3_a0,
     author = {Zhang, Chuanyi},
     title = {Vector-valued pseudo almost periodic functions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {385--394},
     year = {1997},
     volume = {47},
     number = {3},
     mrnumber = {1461419},
     zbl = {0901.42005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1997_47_3_a0/}
}
TY  - JOUR
AU  - Zhang, Chuanyi
TI  - Vector-valued pseudo almost periodic functions
JO  - Czechoslovak Mathematical Journal
PY  - 1997
SP  - 385
EP  - 394
VL  - 47
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_1997_47_3_a0/
LA  - en
ID  - CMJ_1997_47_3_a0
ER  - 
%0 Journal Article
%A Zhang, Chuanyi
%T Vector-valued pseudo almost periodic functions
%J Czechoslovak Mathematical Journal
%D 1997
%P 385-394
%V 47
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_1997_47_3_a0/
%G en
%F CMJ_1997_47_3_a0
Zhang, Chuanyi. Vector-valued pseudo almost periodic functions. Czechoslovak Mathematical Journal, Tome 47 (1997) no. 3, pp. 385-394. http://geodesic.mathdoc.fr/item/CMJ_1997_47_3_a0/

[1] L. Amerio and G. Prouse: Almost-Periodic Functions and Functional Equations. Van Nostrand, New York, 1971. | MR

[2] J.F. Berglund, H.D. Junghenn and P. Milnes: Analysis on Semigroups: Function Spaces, Compactifications, Representations. Wiley, New York, 1989. | MR

[3] A. S. Besicovitch: Almost Periodic Functions. Dover, New York, 1954. | MR

[4] H.A. Bohr: Almost Periodic Functions. Chelsea, New York, 1951.

[5] C. Corduneanu: Almost Periodic Functions. Chelsea, New York, 2nd ed., 1989. | Zbl

[6] K. de Leeuw and I. Glicksberg: Applications of almost periodic compactifications. Acta Math. 105 (1961), 63–97. | DOI | MR

[7] S. Goldberg and P. Irwin: Weakly almost periodic vector valued functions. Dissertationes Math. 157 (1979). | MR

[8] B. M. Levitan and V. V. Zhikov: Almost periodic functions and differential equations. Cambridge University Press, New York, 1982. | MR

[9] P. Milnes: On vector-valued weakly almost periodic functions. J. London Math. Soc. (2) 22 (1980), 467–472. | DOI | MR | Zbl

[10] W.M. Ruess and W.H. Summers: Compactness in spaces of vector valued continuous functions and asymptotic almost periodicity. Math. Nachr. 135 (1988), 7–33. | DOI | MR

[11] W.M. Ruess and W.H. Summers: Integration of asymptotically almost periodic functions and weak asymptotic almost periodicity. Dissertationes Math. 279 (1989). | MR

[12] S. Zaidman: Almost-Periodic Functions in Abstract Spaces. Pitman, London, 1985. | MR | Zbl

[13] C. Zhang: Pseudo almost periodic solutions of some differential equations. J. Math. Anal. Appl. 181 (1994), 62–76. | DOI | MR | Zbl

[14] C. Zhang: Pseudo almost periodic solutions of some differential equations, II. J. Math. Anal. Appl. 192 (1995), 543–561. | DOI | MR | Zbl