On the degrees of permutability of subregular varieties
Czechoslovak Mathematical Journal, Tome 47 (1997) no. 2, pp. 317-325 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 06F35, 08A30, 08B05
@article{CMJ_1997_47_2_a7,
     author = {Barbour, Graham D. and Raftery, James G.},
     title = {On the degrees of permutability of subregular varieties},
     journal = {Czechoslovak Mathematical Journal},
     pages = {317--325},
     year = {1997},
     volume = {47},
     number = {2},
     mrnumber = {1452422},
     zbl = {0927.08001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1997_47_2_a7/}
}
TY  - JOUR
AU  - Barbour, Graham D.
AU  - Raftery, James G.
TI  - On the degrees of permutability of subregular varieties
JO  - Czechoslovak Mathematical Journal
PY  - 1997
SP  - 317
EP  - 325
VL  - 47
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_1997_47_2_a7/
LA  - en
ID  - CMJ_1997_47_2_a7
ER  - 
%0 Journal Article
%A Barbour, Graham D.
%A Raftery, James G.
%T On the degrees of permutability of subregular varieties
%J Czechoslovak Mathematical Journal
%D 1997
%P 317-325
%V 47
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_1997_47_2_a7/
%G en
%F CMJ_1997_47_2_a7
Barbour, Graham D.; Raftery, James G. On the degrees of permutability of subregular varieties. Czechoslovak Mathematical Journal, Tome 47 (1997) no. 2, pp. 317-325. http://geodesic.mathdoc.fr/item/CMJ_1997_47_2_a7/

[kn:BaR1] G. D. Barbour and J. G. Raftery: Ideal determined varieties have unbounded degrees of permutability. Quaestiones Math. 20 (1997), in print. | DOI | MR

[kn:BR95] W.J. Blok and J.G. Raftery: On the quasivariety of BCK-algebras and its subvarieties. Algebra Universalis 33 (1995), 68–90. | DOI | MR

[kn:Cha81] I. Chajda: Distributivity and modularity of lattices of tolerance relations. Algebra Universalis 12 (1981), 247–255. | DOI | MR | Zbl

[kn:CR83] I. Chajda and J. Rachunek: Relational characterizations of permutable and $n$-permutable varieties. Czechoslovak Math. J. 33 (1983), 505–508. | MR

[kn:Csa70] B. Csákány: Characterizations of regular varieties. Acta Sci. Math. (Szeged) 31 (1970), 187–189. | MR

[kn:DMS87] B.A. Davey, K.R. Miles, and V.J. Schumann: Quasi-identities, Mal’cev conditions and congruence regularity. Acta. Sci. Math. (Szeged) 51 (1987), 39–55. | MR

[kn:Dud83b] J. Duda: On two schemes applied to Mal’cev type theorems. Annales Universitatis Scientiarum Budapestiensis. Sectio Mathematica 26 (1983), 39–45. | MR | Zbl

[kn:Dud87] J. Duda: Mal’cev conditions for varieties of subregular algebras. Acta Sci. Math. (Szeged) 51 (1987), 329–334. | MR | Zbl

[kn:Fic68] K. Fichtner: Varieties of universal algebras with ideals. Mat. Sbornik 75(117) (1968), 445–453. (Russian) | MR | Zbl

[kn:Fic70] K. Fichtner: Eine Bermerkung über Mannigfaltigkeiten universeller Algebren mit Idealen. Monatsh. d. Deutsch. Akad. d. Wiss. (Berlin) 12 (1970), 21–25. | MR

[kn:Hag73] J. Hagemann: On regular and weakly regular congurences. Technical report, Technische Hoschschule Darmstadt, June 1973, (Preprint No. 75).

[kn:HM73] J. Hagemann and A. Mitschke: On $n$-permutable congruences. Algebra Universalis 3 (1973), 8–12. | DOI | MR

[kn:Idz83] P.M. Idziak: On varieties of BCK-algebras. Math. Japonica 28 (1983), 157–162. | MR | Zbl

[kn:Idz84a] P.M. Idziak: Lattice operation in BCK-algebras. Math. Japonica 29 (1984), 839–846. | MR | Zbl

[kn:Idz84b] P.M. Idziak: Filters and congruence relations in BCK-semilattices. Math. Japonica 29 (1984), 975–980. | MR | Zbl

[kn:IT78] K. Iséki and S. Tanaka: An introduction to the theory of BCK-algebras. Math. Japonica 23 (1978), 1–26. | MR

[kn:Raf94] J. G. Raftery: Ideal determined varieties need not be congruence 3-permutable. Algebra Universalis 31 (1994), 293–297. | DOI | MR | Zbl

[kn:Wil70] R. Wille: Kongruenzklassengeometrien, volume 113 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-Heidelberg-New York, 1970. | MR

[kn:Wro83a] A. Wroński: BCK-algebras do not form a variety. Math. Japonica 28 (1983), 211–213. | MR