Keywords: Markov processes; invariant measures; recurrence; stochastic parabolic equations
@article{CMJ_1997_47_2_a6,
author = {Seidler, Jan},
title = {Ergodic behaviour of stochastic parabolic equations},
journal = {Czechoslovak Mathematical Journal},
pages = {277--316},
year = {1997},
volume = {47},
number = {2},
mrnumber = {1452421},
zbl = {0935.60041},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1997_47_2_a6/}
}
Seidler, Jan. Ergodic behaviour of stochastic parabolic equations. Czechoslovak Mathematical Journal, Tome 47 (1997) no. 2, pp. 277-316. http://geodesic.mathdoc.fr/item/CMJ_1997_47_2_a6/
[1] J. Azéma, M. Kaplan-Duflo, D. Revuz: Récurrence fine des processus de Markov. Ann. Inst. H. Poincaré Probab. Statist. 2 (1966), 185–220. | MR
[2] J. Azema, M. Kaplan-Duflo, D. Revuz: Mesure invariante sur les classes récurrentes des processus de Markov. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 8 (1967), 157–181. | DOI | MR
[3] J. Azéma, M. Duflo, D. Revuz: Mesure invariante des processus de Markov recurrents. Séminaire de Probabilités III, Lecture Notes in Math. 88, Springer-Verlag, Berlin, 1969, pp. 24–33. | MR
[4] R. N. Bhattacharya: Criteria for recurrence and existence of invariant measures for multidimensional diffusions. Ann. Probab. 6 (1978), 541–553. | DOI | MR | Zbl
[5] A. Chojnowska-Michalik, B. Gołdys: Existence, uniqueness and invariant measures for stochastic semilinear equations on Hilbert spaces. Probab. Theory Related Fields 102 (1995), 331–356. | DOI | MR
[6] G. Da Prato, A. Debussche: Stochastic Cahn-Hilliard equation. Nonlinear Anal. 26 (1996), 241–263. | DOI | MR
[7] G. Da Prato, J. Zabczyk: Stochastic equations in infinite dimensions. Cambridge University Press, Cambridge, 1992. | MR
[8] C. Dellacherie, P.–A. Meyer: Probabilities and potential, Part A. North-Holland, Amsterdam, 1978. | MR
[9] M. Duflo, D. Revuz: Propriétés asymptotiques de probabilités de transition des processus de Markov récurrents. Ann. Inst. H. Poincaré Probab. Statist. 5 (1969), 233–244. | MR
[10] E. B. Dynkin: Osnovaniya teorii markovskikh processov. GIFML, Moskva, 1959.
[11] E. B. Dynkin: Markovskie processy. GIFML, Moskva, 1963.
[12] F. Flandoli, B. Maslowski: Ergodicity of the 2-D Navier-Stokes equation under random perturbations. Comm. Math. Phys. 171 (1995), 119–141. | DOI | MR
[13] S. R. Foguel: Limit theorems for Markov processes. Trans. Amer. Math. Soc. 121 (1966), 200–209. | DOI | MR | Zbl
[14] T. Funaki: Random motion of strings and related stochastic evolution equations. Nagoya Math. J. 89 (1983), 129–193. | DOI | MR | Zbl
[15] R. J. Gardner, W. F. Pfeffer: Borel measures. Handbook of set-theoretic topology, North-Holland, Amsterdam 1984, pp. 961–1043. | MR
[16] D. Gatarek, B. Gołdys: On weak solutions of stochastic equations in Hilbert spaces. Stochastics Stochastics Rep. 46 (1994), 41–51. | DOI | MR
[17] R. K. Getoor: Transience and recurrence of Markov processes. Séminaire de Probabilités XIV – 1978/79, Lecture Notes in Math. 784, Springer-Verlag, Berlin, 1980, pp. 397–409. | MR | Zbl
[18] N. C. Jain: Some limit theorems for a general Markov process. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 6 (1966), 206–223. | DOI | MR | Zbl
[19] B. Jamison, S. Orey: Markov chains recurrent in the sense of Harris. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 8 (1967), 41–48. | DOI | MR
[20] R. Z. Hasminskiĭ: Èrgodiqeskie svoĭstva vozvratnyh diffuzionnyh processov i stabilizaciya rexeniĭ zadaqi Koxi dlya paraboliqeskih uravneniĭ. Teor. Veroyatnost. i Primenen. 5 (1960), 196–214.
[21] R. Z. Hasminskiĭ: Ustoĭqivost sistem differencialnyh uravneniĭ pri sluqaĭnyh vozmuweniyah ih parametrov. Nauka, Moskva, 1969. | MR
[22] U. Krengel: Ergodic theorems. Walter de Gruyter, Berlin-New York, 1985. | MR | Zbl
[23] G. Maruyama: On the strong Markov property. Mem. Fac. Sci. Kyushu Univ. Ser. A 13 (1959), 17–29. | MR | Zbl
[24] G. Maruyama, H. Tanaka: Some properties of one-dimensional diffusion processes. Mem. Fac. Sci. Kyusyu Univ. Ser. A 11 (1957), 117–141. | MR
[25] G. Maruyama, H. Tanaka: Ergodic property of $N$-dimensional recurrent Markov processes. Mem. Fac. Sci. Kyushu Univ. Ser. A 13 (1959), 157–172. | MR
[26] B. Maslowski: On probability distributions of solutions of semilinear stochastic evolution equations. Stochastics Stochastics Rep. 45 (1993), 17–44. | DOI | MR | Zbl
[27] B. Maslowski: Uniqueness and stability of invariant measures for stochastic differential equations in Hilbert spaces. Stochastics Stochastics Rep. 28 (1989), 85–114. | DOI | MR | Zbl
[28] B. Maslowski, J. Seidler: Ergodic properties of recurrent solutions of stochastic evolution equations. Osaka J. Math. 31 (1994), 965–1003. | MR
[29] S. P. Meyn, R. L. Tweedie: Generalized resolvents and Harris recurrence of Markov processes. Doeblin and modern probability, Contemporary Mathematics Vol. 149, AMS, Providence, 1993, pp. 227–250. | MR
[30] S. P. Meyn, R. L. Tweedie: Stability of Markovian processes IIContinuous time processes and sampled chains. Adv. in Appl. Probab. 25 (1993), 487–517. | DOI | MR
[31] C. Mueller: Coupling and invariant measures for the heat equation with noise. Ann. Probab. 21 (1993), 2189–2199. | DOI | MR | Zbl
[32] S. Peszat, J. Seidler: Maximal inequalities and space-time regularity of stochastic convolutions. Math. Bohem (to appear). | MR
[33] S. Peszat, J. Zabczyk: Strong Feller property and irreducibility for diffusions on Hilbert spaces. Ann. Probab. 23 (1995), 157–172. | DOI | MR
[34] M. Scheutzow: Qualitative behaviour of stochastic delay equations with a bounded memory. Stochastics 12 (1984), 41–80. | DOI | MR | Zbl
[35] J. Seidler: Da Prato-Zabczyk’s maximal inequality revisited I. Math. Bohem. 118 (1993), 67–106. | MR | Zbl
[36] A. N. Shiryayev: Probability. Springer-Verlag, New York-Berlin, 1984. | MR | Zbl
[37] A. V. Skorohod: Asimptotiqeskie metody teorii stohastiqeskih differentsialnyh uravneniĭ. Naukova Dumka, Kiev, 1987.
[38] Ł. Stettner: On the existence and uniqueness of invariant measure for continuous time Markov processes. Lefschetz Center for Dynamical Systems Preprint # 86–18, April 1986.
[39] Ł. Stettner: Remarks on ergodic conditions for Markov processes on Polish spaces. Bull. Polish Acad. Sci. Math. 42 (1994), 103–114. | MR | Zbl
[40] D. W. Stroock, S. R. S. Varadhan: Diffusion processes with continuous coefficients II. Comm. Pure Appl. Math. 22 (1969), 479–530. | DOI | MR
[41] D. W. Stroock, S. R. S. Varadhan: On the support of diffusion processes with applications to the strong maximum principle. Proceedings Sixth Berkeley Symposium Math. Statist. Probab., Vol. III., Univ. of California Press, Berkeley-Los Angeles, 1972, pp. 333–359. | MR
[42] J. Zabczyk: Structural properties and limit behaviour of linear stochastic systems in Hilbert spaces. Mathematical control theory, Banach Center Publications Vol. 14, PWN, Warsaw, 1985, pp. 591–609. | MR | Zbl
[43] J. Zabczyk: Symmetric solutions of semilinear stochastic equations. Stochastic partial differential equations and applications II (Trento, 1988), Lecture Notes in Math. 1390, Springer-Verlag, Berlin, 1989, pp. 237–256. | MR | Zbl