Asymptotic behaviour of oscillatory solutions of $n$-th order differential equations with quasiderivatives
Czechoslovak Mathematical Journal, Tome 47 (1997) no. 2, pp. 245-259 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Sufficient conditions are given under which the sequence of the absolute values of all local extremes of $y^{[i]}$, $i\in \lbrace 0,1,\dots , n-2\rbrace $ of solutions of a differential equation with quasiderivatives $y^{[n]}=f(t,y^{[0]},\dots , y^{[n-1]})$ is increasing and tends to $\infty $. The existence of proper, oscillatory and unbounded solutions is proved.
Sufficient conditions are given under which the sequence of the absolute values of all local extremes of $y^{[i]}$, $i\in \lbrace 0,1,\dots , n-2\rbrace $ of solutions of a differential equation with quasiderivatives $y^{[n]}=f(t,y^{[0]},\dots , y^{[n-1]})$ is increasing and tends to $\infty $. The existence of proper, oscillatory and unbounded solutions is proved.
Classification : 34C10, 34C11
@article{CMJ_1997_47_2_a4,
     author = {Bartu\v{s}ek, Miroslav},
     title = {Asymptotic behaviour of oscillatory solutions of $n$-th order differential equations with quasiderivatives},
     journal = {Czechoslovak Mathematical Journal},
     pages = {245--259},
     year = {1997},
     volume = {47},
     number = {2},
     mrnumber = {1452419},
     zbl = {0930.34023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1997_47_2_a4/}
}
TY  - JOUR
AU  - Bartušek, Miroslav
TI  - Asymptotic behaviour of oscillatory solutions of $n$-th order differential equations with quasiderivatives
JO  - Czechoslovak Mathematical Journal
PY  - 1997
SP  - 245
EP  - 259
VL  - 47
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_1997_47_2_a4/
LA  - en
ID  - CMJ_1997_47_2_a4
ER  - 
%0 Journal Article
%A Bartušek, Miroslav
%T Asymptotic behaviour of oscillatory solutions of $n$-th order differential equations with quasiderivatives
%J Czechoslovak Mathematical Journal
%D 1997
%P 245-259
%V 47
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_1997_47_2_a4/
%G en
%F CMJ_1997_47_2_a4
Bartušek, Miroslav. Asymptotic behaviour of oscillatory solutions of $n$-th order differential equations with quasiderivatives. Czechoslovak Mathematical Journal, Tome 47 (1997) no. 2, pp. 245-259. http://geodesic.mathdoc.fr/item/CMJ_1997_47_2_a4/

[1] M. Bartušek: Monotonicity theorem for second-order non-linear differential equations. Arch. Math. XVI (1980), no. 3, 127–136.

[2] M. Bartušek: The asymptotic behaviour of solutions of the differential equation of the third order. Arch. Math. XX (1984), no. 3, 101–112. | MR

[3] M. Bartušek: The asymptotic behaviour of oscillatory solutions of the equation of the fourth Order. Arch. Math. 21 (1985), no. 2, 93–104. | MR

[4] M. Bartušek: On oscillatory solution of the differential equation of the $n$-th order. Arch. Math. 22 (1986), no. 3, 145–156. | MR

[5] M. Bartušek: Asymptotic Properties of Oscillatory Solutions of Differential Equations of the $n$-th Order. FOLIA FSN Univ. Masaryk. Brunensis, Math. 3, Masaryk Univ. Brno, 1992. | MR

[6] M. Bartušek: Oscillatory criteria for nonlinear $n$-th order differential equations with quasi-derivatives. Georgian Math. J. 3 (1996), no. 4, 301–314. | DOI | MR

[7] Š. Belohorec: Monotone and oscillatory solutions of a class of nonlinear differential equations. Math. Čas. 19 (1969), no. 3, 169–187. | MR | Zbl

[8] I. Bihari: Oscillation and monotonicity theorems concerning non-linear differential equations of the second order. Acta Math. Acad. Sci. Hung. IX (1958), no. 1–2, 83–104. | DOI | MR

[9] D. Bobrowski: Some properties of oscillatory solutions of certain differential equations of second order. Ann. Soc. Math. Polonae XI (1967), 39–48. | MR | Zbl

[10] K.M. Das: Comparison and monotonicity theorems for second order non-linear differential equations. Acta Math. Acad. Sci. Hung. 15 (1964), no. 3–4, 449–456. | DOI | MR

[11] I. Foltyńska: On certain properties of oscillatory solutions of the second order nonlinear differential equation (Polish). Fasc. Math. 4 (1969), 57–64.

[12] I.T. Kiguradze: Some Singular Boundary-Value Problems for Ordinary Differential Equations. Izd. Tbiliss. Univ., Tbilisi, 1975. (Russian) | MR

[13] I.T. Kiguradze: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Nauka, Moscow, 1990. (Russian)