A difference between continuous and absolutely continuous norms in Banach function spaces
Czechoslovak Mathematical Journal, Tome 47 (1997) no. 2, pp. 221-232 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

On examples we show a difference between a continuous and absolutely continuous norm in Banach function spaces.
On examples we show a difference between a continuous and absolutely continuous norm in Banach function spaces.
Classification : 46E30
Keywords: Banach function spaces; absolutely continuous norms; continuous norm
@article{CMJ_1997_47_2_a2,
     author = {Lang, Jan and Nekvinda, Ale\v{s}},
     title = {A difference between continuous and absolutely continuous norms in {Banach} function spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {221--232},
     year = {1997},
     volume = {47},
     number = {2},
     mrnumber = {1452417},
     zbl = {0926.46025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1997_47_2_a2/}
}
TY  - JOUR
AU  - Lang, Jan
AU  - Nekvinda, Aleš
TI  - A difference between continuous and absolutely continuous norms in Banach function spaces
JO  - Czechoslovak Mathematical Journal
PY  - 1997
SP  - 221
EP  - 232
VL  - 47
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_1997_47_2_a2/
LA  - en
ID  - CMJ_1997_47_2_a2
ER  - 
%0 Journal Article
%A Lang, Jan
%A Nekvinda, Aleš
%T A difference between continuous and absolutely continuous norms in Banach function spaces
%J Czechoslovak Mathematical Journal
%D 1997
%P 221-232
%V 47
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_1997_47_2_a2/
%G en
%F CMJ_1997_47_2_a2
Lang, Jan; Nekvinda, Aleš. A difference between continuous and absolutely continuous norms in Banach function spaces. Czechoslovak Mathematical Journal, Tome 47 (1997) no. 2, pp. 221-232. http://geodesic.mathdoc.fr/item/CMJ_1997_47_2_a2/

[1] C. Bennett and R. Sharpley: Interpolation of Operators. Pure Appl. Math. 129, Academic Press, 1988. | MR

[2] Q. Lai and L. Pick: The Hardy operator, $L_{\infty }$ and BMO. J. London Math. Soc. 48 (1993), 167–177. | MR