Keywords: complete bornological locally convex spaces; Dobrakov’s integral; $\sigma $-finite semivariation; sequential convergence
@article{CMJ_1997_47_2_a1,
author = {Halu\v{s}ka, J\'an},
title = {On integration in complete bornological locally convex spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {205--219},
year = {1997},
volume = {47},
number = {2},
mrnumber = {1452416},
zbl = {0926.46037},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1997_47_2_a1/}
}
Haluška, Ján. On integration in complete bornological locally convex spaces. Czechoslovak Mathematical Journal, Tome 47 (1997) no. 2, pp. 205-219. http://geodesic.mathdoc.fr/item/CMJ_1997_47_2_a1/
[1] R. G. Bartle: A general bilinear vector integral. Studia Math. 15 (1956), 337–352. | DOI | MR | Zbl
[2] M. E. Ballvé: $L^{\alpha }$ spaces for operator valued measures. Ann. Sc. Math. Québec 14 (1990), 9–15. | MR
[3] M. E. Ballvé: On the stability of the completeness of $L^{\alpha }$ spaces. Rend. Circ. Mat. Palermo 39 (1990), 58–64. | DOI | MR
[4] M. E. Ballvé: Geometry and integration for operator valued measures. J. Math. Anal. Appl. 165 (1992), 62–70. | DOI | MR
[5] R. Bravo, P. Jiménez Guerra: Linear operators and vector integrals. Math. Japonica 36 (1991), 255–262. | MR
[6] J. Diestel and J. J. Uhl, Jr.: Vector Measures. Providence, Rhode Island, 1977. | MR
[7] I. Dobrakov: On integration in Banach spaces, I. Czechoslovak Math. J. 20 (1970), 511–536. | MR | Zbl
[8] I. Dobrakov: On integration in Banach spaces, II. Czechoslovak Math. J. 20 (1970), 680–695. | MR | Zbl
[9] I. Dobrakov: On representation of linear operators on $C_0(T,\mathbb{X})$. Czechoslovak Math. J. 21 (1971), 13–30. | MR
[10] I. Dobrakov: On integration in Banach spaces, III. Czechoslovak Math. J. 29 ((1979), 478–499. | MR
[11] I. Dobrakov: On integration in Banach spaces, IV. Czechoslovak Math. J. 30 (1980), 259–279. | MR | Zbl
[12] I. Dobrakov: On integration in Banach spaces, V. Czechoslovak Math. J. 30 (1980), 610–622. | MR | Zbl
[13] I. Dobrakov: On integration in Banach spaces, VI. Czechoslovak Math. J. 35 (1985), 173–187. | MR | Zbl
[14] I. Dobrakov: On integration in Banach spaces, VII. Czechoslovak Math. J. 38 (1988), 434–449. | MR | Zbl
[15] C. Debieve: Integration of vector valued functions with respect to vector valued measures. Rev. Roumaine Math. Pures Appl. 26 (1981), 943–957. | MR | Zbl
[16] N. Dinculeanu: Vector Measures. VEB Deutscher Verlag der Wissenschaften, Berlin, 1966. | MR | Zbl
[17] N. Dunford and J. T. Schwartz: Linear Operators. Part I: General Theory. Interscience Publishers, New York, 1958. | MR
[18] P. R. Halmos: Measure Theory. Springer-Verlag, Berlin-Heidelberg-New York, 1950. | Zbl
[19] J. Haluška: On the continuity of the semivariation in locally convex spaces. Math. Slovaca 43 (1993), 185–192. | MR
[20] J. Haluška: On lattices of set functions in complete bornological locally convex spaces. Simon Stevin 67 (1993), 27–48. | MR
[21] J. Haluška: On a lattice structure of operator spaces in complete bornological locally convex spaces. Tatra Mt. Math. Publ. 2 (1993), 143–147. | MR
[22] J. Haluška: On convergences of functions in complete bornological locally convex spaces. Rev. Roumaine Math. Pures Appl. 38 (1993), 327–337. | MR
[23] H. Hogbe-Nlend: Bornologies and Functional Analysis. North-Holland, Amsterdam-New York-Oxford, 1977. | MR | Zbl
[24] H. Jarchow: Locally Convex Spaces. Teubner, Stuttgart, 1981. | MR | Zbl
[25] H. B. Maynard: A Radon-Nikodým theorem for operator valued measures. Trans. Amer. Math. Soc. 173 (1972), 449–463. | MR | Zbl
[26] J. V. Radyno: Linear Equations and Bornology. Izd. Beloruskogo gosudarstvennogo universiteta, Minsk, 1982. (in Russian) | MR | Zbl
[27] R. Rao Chivukula and A. S. Sastry: Product vector measures via Bartle integrals. J. Math. Anal. Appl. 96 (1983), 180–195. | DOI | MR
[28] S. K. Roy and N. D. Charkaborty: Integration of vector valued functions with respect to an operator valued measure. Czechoslovak Math. J. 36 (1986), 198–209. | MR
[29] C. Schwartz: Integration for the Dobrakov integral. Czechoslovak Math. J. 30 (1980), 640–646. | MR
[30] C. Schwartz: Weak Fubini theorem for the Dobrakov integral. Czechoslovak Math. J. 30 (1980), 647–654. | MR
[31] W. Smith and D. H. Tucker: Weak integral convergence theorem and operator measures. Pacific J. Math. 111 (1984), 243–256. | DOI | MR