Strong compact elements in multiplicative lattices
Czechoslovak Mathematical Journal, Tome 47 (1997) no. 1, pp. 105-112 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 06B05, 06B15, 06C99, 06F05, 06F10
@article{CMJ_1997_47_1_a7,
     author = {Jayaram, C. and Johnson, E. W.},
     title = {Strong compact elements in multiplicative lattices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {105--112},
     year = {1997},
     volume = {47},
     number = {1},
     mrnumber = {1435609},
     zbl = {0897.06007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1997_47_1_a7/}
}
TY  - JOUR
AU  - Jayaram, C.
AU  - Johnson, E. W.
TI  - Strong compact elements in multiplicative lattices
JO  - Czechoslovak Mathematical Journal
PY  - 1997
SP  - 105
EP  - 112
VL  - 47
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_1997_47_1_a7/
LA  - en
ID  - CMJ_1997_47_1_a7
ER  - 
%0 Journal Article
%A Jayaram, C.
%A Johnson, E. W.
%T Strong compact elements in multiplicative lattices
%J Czechoslovak Mathematical Journal
%D 1997
%P 105-112
%V 47
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_1997_47_1_a7/
%G en
%F CMJ_1997_47_1_a7
Jayaram, C.; Johnson, E. W. Strong compact elements in multiplicative lattices. Czechoslovak Mathematical Journal, Tome 47 (1997) no. 1, pp. 105-112. http://geodesic.mathdoc.fr/item/CMJ_1997_47_1_a7/

[1] D.D. Anderson: Abstract commutative ideal theory without chain condition. Algebra Universalis 6 (1976), 131–145. | DOI | MR | Zbl

[2] D.D. Anderson, C. Jayaram and F. Alarcon: Some results on abstract commutative ideal theory. Period. Math. Hungar. 30 (1995), 1–26. | DOI | MR

[3] R.P. Dilworth: Abstract commutative ideal theory. Pacific J. Math. 12 (1962), 481–498. | DOI | MR | Zbl

[4] M.F. Janowitz: Principal multiplicative lattices. Pacific J. Math. 33 (1970), 653–656. | DOI | MR | Zbl

[5] C. Jayaram and E.W. Johnson: Almost principal element lattices. Inter. J. Math. 18 (1995), 535–538. | MR

[6] E.W. Johnson and J.P. Lediaev: Representable distributive Noether lattices. Pacific J. Math. 28 (1969), 561–564. | DOI | MR

[7] E.W. Johnson and J.A. Johnson: $P$-lattices as ideal lattices and submodule lattices. Comment. Math. Univ. San. Pauli. 38 (1989), 21–27. | MR