@article{CMJ_1997_47_1_a6,
author = {Klav\v{z}ar, Sandi and Milutinovi\'c, Uro\v{s}},
title = {Graphs $S(n,k)$ and a variant of the {Tower} of {Hanoi} problem},
journal = {Czechoslovak Mathematical Journal},
pages = {95--104},
year = {1997},
volume = {47},
number = {1},
mrnumber = {1435608},
zbl = {0898.05042},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1997_47_1_a6/}
}
Klavžar, Sandi; Milutinović, Uroš. Graphs $S(n,k)$ and a variant of the Tower of Hanoi problem. Czechoslovak Mathematical Journal, Tome 47 (1997) no. 1, pp. 95-104. http://geodesic.mathdoc.fr/item/CMJ_1997_47_1_a6/
[bamu-94] H.-J. Bandelt, H.M. Mulder, E. Wilkeit: Quasi-median graphs and algebras. J. Graph Theory 18 (1994), 681–703. | DOI | MR
[clau-84] N. Claus (= E. Lucas): La Tour d’Hanoi, Jeu de calcul. Science et Nature 1(8) (1884), 127–128.
[er-83] M.C. Er: An analysis of the generalized Towers of Hanoi problem. BIT 23 (1983), 295–302. | DOI | MR | Zbl
[fesc-92] J. Feigenbaum, A.A. Schäffer: Finding the prime factors of strong direct product graphs in polynomial time. Discrete Math. 109 (1992), 77–102. | DOI | MR
[hinz-89] A.M. Hinz: The Tower of Hanoi. Enseign. Math. 35 (1989), 289–321. | MR | Zbl
[hinz-92a] A.M. Hinz: Shortest paths between regular states of the Tower of Hanoi. Inform. Sci. 63 (1992), 173–181. | DOI | MR | Zbl
[hinz-92b] A.M. Hinz: Pascal’s triangle and the Tower of Hanoi. Amer. Math. Monthly 99 (1992), 538–544. | DOI | MR | Zbl
[hisc-90] A.M. Hinz, A. Schief: The average distance on the Sierpiński gasket. Probab. Theory Related Fields 87 (1990), 129–138. | DOI | MR
[imiz-75] W. Imrich, H. Izbicki: Associative products of graphs. Monatsh. Math. 80 (1975), 277–281. | DOI | MR
[lips-74] S. L. Lipscomb: A universal one-dimensional metric space. TOPO 72—General Topology and its Applications, Second Pittsburgh Internat. Conf., Volume 378 of Lecture Notes in Math., Springer-Verlag, New York, 1974, pp. 248–257. | MR | Zbl
[lips-75] S. L. Lipscomb: On imbedding finite-dimensional metric spaces. Trans. Amer. Math. Soc. 211 (1975), 143–160. | DOI | MR | Zbl
[lipe-92] S. L. Lipscomb, J. C. Perry: Lipscomb’s $L(A)$ space fractalized in Hilbert’s $l^2(A)$ space. Proc. Amer. Math. Soc. 115 (1992), 1157–1165. | MR
[milu-92] U. Milutinović: Completeness of the Lipscomb space. Glas. Mat. Ser. III 27(47) (1992), 343–364. | MR
[milu-94] U. Milutinović: A universal separable metric space of Lipscomb’s type. Preprint Series Univ. of Ljubljana 32 (1994), 443.
[wilk-90] E. Wilkeit: Isometric embeddings in Hamming graphs. J. Combin. Theory Ser. B 50 (1990), . | DOI | MR | Zbl