@article{CMJ_1997_47_1_a14,
author = {Nov\'ak, V{\'\i}t\v{e}zslav and Novotn\'y, Miroslav},
title = {Relational structures and dependence spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {179--191},
year = {1997},
volume = {47},
number = {1},
mrnumber = {1435616},
zbl = {0897.08001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1997_47_1_a14/}
}
Novák, Vítězslav; Novotný, Miroslav. Relational structures and dependence spaces. Czechoslovak Mathematical Journal, Tome 47 (1997) no. 1, pp. 179-191. http://geodesic.mathdoc.fr/item/CMJ_1997_47_1_a14/
[1] G. Birkhoff: Generalized Arithmetics. Duke Math. Journ. 9 (1942), 283–302. | DOI
[2] G. Birkhoff: Lattice Theory, third edition. Providence, Rhode Island, 1967. | MR
[3] J.L. Kelley: General Topology. Van Nostrand, New York, 1955. | MR | Zbl
[4] J. Novák: On some Ordered Continua of Power $2^{\aleph _0}$ containing a Dense Subset of Power $\aleph _1$. Czechoslovak Math. J. 76 (1951), 63–79.
[5] V. Novák: On the Pseudodimension of Ordered Sets. Czechoslovak Math. J. 13 (88) (1963), 587–598.
[6] V. Novák: Some Cardinal Characteristics of Ordered Sets. (to appear).
[7] V. Novák, M. Novotný: Abstrakte Dimension von Strukturen. Ztschr. f. math. Logik u. Grundl. d. Math. 20 (1974), 207–220. | DOI
[8] M. Novotný: Monounary Algebras in the Work of Czechoslovak Mathematicians. Arch. Math. (Brno) 26 (1990), 155–164.
[9] M. Novotný: Reducts versus Reducing Operators. Mathematical aspects of natural and formal languages, G. Păun (ed.), World Scientific Series in Computer Science, Vol. 43, Singapore-New York-London-Hong Kong, 1994, pp. 359–374.
[10] M. Novotný: Dependence Spaces of Information Systems. (to appear). | MR
[11] M. Novotný, Z. Pawlak: Algebraic Theory of Independence in Information Systems. Fund. Inform. 14 (1991), 454–476. | MR
[12] M. Novotný, Z. Pawlak: On a Problem concerning Dependence Spaces. Fund. Inform. 16 (1992), 275–287. | MR
[13] J. Šlapal: Cardinal Arithmetic of General Relational Systems. Czechoslovak Math. J. 43 (118) (1993), 125–139. | MR