Compact universal relation in varieties with constants
Czechoslovak Mathematical Journal, Tome 47 (1997) no. 1, pp. 173-178
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{CMJ_1997_47_1_a13,
author = {Chajda, Ivan and Duda, Jarom{\'\i}r},
title = {Compact universal relation in varieties with constants},
journal = {Czechoslovak Mathematical Journal},
pages = {173--178},
year = {1997},
volume = {47},
number = {1},
mrnumber = {1435615},
zbl = {0897.08007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1997_47_1_a13/}
}
Chajda, Ivan; Duda, Jaromír. Compact universal relation in varieties with constants. Czechoslovak Mathematical Journal, Tome 47 (1997) no. 1, pp. 173-178. http://geodesic.mathdoc.fr/item/CMJ_1997_47_1_a13/
[1] Chajda I.: Lattices of compatible relations. Arch. Math. (Brno) 13 (1977), 89–96. | MR | Zbl
[2] Csákány B.: Varieties whose algebras have no idempotent elements. Colloq. Math. 35 (1976), 201–203. | MR
[3] Csákány B.: Proving Magari’s theorem via a Mal’cev-type result. Proceeding of the Summer School of General Algebra and Ordered Sets 1994, Palacký University Olomouc, pp. 31–32.
[4] Duda J.: On two schemes applied to Mal’cev type theorems. Ann. Sci. Budapest 26 (1983), 39–45. | MR | Zbl
[5] Kollár J.: Congruences and one element subalgebras. Algebra Univ. 9 (1979), 266–267. | DOI
[6] Quackenbush R. W.: Varieties with $n$-principal compact congruences. Algebra Univ. 14 (1982), 292–296. | DOI | Zbl