Compact universal relation in varieties with constants
Czechoslovak Mathematical Journal, Tome 47 (1997) no. 1, pp. 173-178 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 08A30, 08B05
@article{CMJ_1997_47_1_a13,
     author = {Chajda, Ivan and Duda, Jarom{\'\i}r},
     title = {Compact universal relation in varieties with constants},
     journal = {Czechoslovak Mathematical Journal},
     pages = {173--178},
     year = {1997},
     volume = {47},
     number = {1},
     mrnumber = {1435615},
     zbl = {0897.08007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1997_47_1_a13/}
}
TY  - JOUR
AU  - Chajda, Ivan
AU  - Duda, Jaromír
TI  - Compact universal relation in varieties with constants
JO  - Czechoslovak Mathematical Journal
PY  - 1997
SP  - 173
EP  - 178
VL  - 47
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_1997_47_1_a13/
LA  - en
ID  - CMJ_1997_47_1_a13
ER  - 
%0 Journal Article
%A Chajda, Ivan
%A Duda, Jaromír
%T Compact universal relation in varieties with constants
%J Czechoslovak Mathematical Journal
%D 1997
%P 173-178
%V 47
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_1997_47_1_a13/
%G en
%F CMJ_1997_47_1_a13
Chajda, Ivan; Duda, Jaromír. Compact universal relation in varieties with constants. Czechoslovak Mathematical Journal, Tome 47 (1997) no. 1, pp. 173-178. http://geodesic.mathdoc.fr/item/CMJ_1997_47_1_a13/

[1] Chajda I.: Lattices of compatible relations. Arch. Math. (Brno) 13 (1977), 89–96. | MR | Zbl

[2] Csákány B.: Varieties whose algebras have no idempotent elements. Colloq. Math. 35 (1976), 201–203. | MR

[3] Csákány B.: Proving Magari’s theorem via a Mal’cev-type result. Proceeding of the Summer School of General Algebra and Ordered Sets 1994, Palacký University Olomouc, pp. 31–32.

[4] Duda J.: On two schemes applied to Mal’cev type theorems. Ann. Sci. Budapest 26 (1983), 39–45. | MR | Zbl

[5] Kollár J.: Congruences and one element subalgebras. Algebra Univ. 9 (1979), 266–267. | DOI

[6] Quackenbush R. W.: Varieties with $n$-principal compact congruences. Algebra Univ. 14 (1982), 292–296. | DOI | Zbl