Congruences and ideals in ternary rings
Czechoslovak Mathematical Journal, Tome 47 (1997) no. 1, pp. 163-172 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A ternary ring is an algebraic structure ${\mathcal R}=(R;t,0,1)$ of type $(3,0,0)$ satisfying the identities $t(0,x,y)=y=t(x,0,y)$ and $t(1,x,0)=x=(x,1,0)$ where, moreover, for any $a$, $b$, $c\in R$ there exists a unique $d\in R$ with $t(a,b,d)=c$. A congruence $\theta $ on ${\mathcal R}$ is called normal if ${\mathcal R}/\theta $ is a ternary ring again. We describe basic properties of the lattice of all normal congruences on ${\mathcal R}$ and establish connections between ideals (introduced earlier by the third author) and congruence kernels.
A ternary ring is an algebraic structure ${\mathcal R}=(R;t,0,1)$ of type $(3,0,0)$ satisfying the identities $t(0,x,y)=y=t(x,0,y)$ and $t(1,x,0)=x=(x,1,0)$ where, moreover, for any $a$, $b$, $c\in R$ there exists a unique $d\in R$ with $t(a,b,d)=c$. A congruence $\theta $ on ${\mathcal R}$ is called normal if ${\mathcal R}/\theta $ is a ternary ring again. We describe basic properties of the lattice of all normal congruences on ${\mathcal R}$ and establish connections between ideals (introduced earlier by the third author) and congruence kernels.
Classification : 08A05, 08A30, 13A15, 17A40, 20N10
Keywords: ternary ring; ideal; congruence; normal congruence; congruence kernel
@article{CMJ_1997_47_1_a12,
     author = {Chajda, Ivan and Hala\v{s}, Radom{\'\i}r and Machala, Franti\v{s}ek},
     title = {Congruences and ideals in ternary rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {163--172},
     year = {1997},
     volume = {47},
     number = {1},
     mrnumber = {1435614},
     zbl = {0934.17001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1997_47_1_a12/}
}
TY  - JOUR
AU  - Chajda, Ivan
AU  - Halaš, Radomír
AU  - Machala, František
TI  - Congruences and ideals in ternary rings
JO  - Czechoslovak Mathematical Journal
PY  - 1997
SP  - 163
EP  - 172
VL  - 47
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_1997_47_1_a12/
LA  - en
ID  - CMJ_1997_47_1_a12
ER  - 
%0 Journal Article
%A Chajda, Ivan
%A Halaš, Radomír
%A Machala, František
%T Congruences and ideals in ternary rings
%J Czechoslovak Mathematical Journal
%D 1997
%P 163-172
%V 47
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_1997_47_1_a12/
%G en
%F CMJ_1997_47_1_a12
Chajda, Ivan; Halaš, Radomír; Machala, František. Congruences and ideals in ternary rings. Czechoslovak Mathematical Journal, Tome 47 (1997) no. 1, pp. 163-172. http://geodesic.mathdoc.fr/item/CMJ_1997_47_1_a12/

[1] G.E. Bates, F. Kiokemeister: A note on homomorphic mappings of quasigroups into multiplicative systems. Bull. Amer. Math. Soc. 54 (1948), 1180–1185. | DOI

[2] R. Bělohlávek, I. Chajda: Congruences and ideals in semiloops. Acta Sci. Math. (Szeged) 59 (1994), 43–47.

[3] I. Chajda, R. Halaš: Ideals in bi-ternary rings. Discussione Math. Algebra and Stochastic Methods 15 (1995), 11–21.

[4] H.P. Gumm, A. Ursini: Ideals in universal algebra. Algebra Univ. 19 (1984), 45–54. | DOI

[5] M. Hall: Projective planes. Trans. Amer. Math. Soc. 54 (1943), 229–277. | DOI | Zbl

[6] B. Jónsson: On the representation of lattices. Math. Scand. 1 (1953), 193–206. | DOI

[7] F. Machala: Erweiterte lokale Ternärringe. Czech. Math. J. 27 (1977), 560–572. | Zbl

[8] F. Machala: Koordinatisation projectiver Ebenen mit Homomorphismus. Czech. Math. J. 27 (1977), 573–590.

[9] F. Machala: Koordinatisation affiner Ebenen mit Homomorphismus. Math. Slovaca 27 (1977), 181–193. | Zbl

[10] G. Pickert: ARRAY(0x9fa9250). Heidelberg, New York, 1975, pp. .

[11] A. Ursini: Sulle varietá di algebra con una buona teoria degli ideali. Bull. U.M.I. 6 (1972), no. 4, 90–95.