@article{CMJ_1997_47_1_a11,
author = {Nebesk\'y, Ladislav},
title = {Geodesics and steps in a connected graph},
journal = {Czechoslovak Mathematical Journal},
pages = {149--161},
year = {1997},
volume = {47},
number = {1},
mrnumber = {1435613},
zbl = {0898.05041},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1997_47_1_a11/}
}
Nebeský, Ladislav. Geodesics and steps in a connected graph. Czechoslovak Mathematical Journal, Tome 47 (1997) no. 1, pp. 149-161. http://geodesic.mathdoc.fr/item/CMJ_1997_47_1_a11/
[1] M. Behzad, G. Chartrand and L. Lesniak-Foster: Graphs & Digraphs. Prindle, Weber & Schmidt, Boston 1979. | MR
[2] F. Harary: Graph Theory. Addison-Wesley, Reading (Mass.) 1969. | MR | Zbl
[3] D. C. Kay and G. Chartrand: A characterization of certain ptolemaic graphs. Canad. J. Math. 17 (1965), 342–346. | DOI | MR
[4] H. M. Mulder: The Interval Function of a Graph. Mathematisch Centrum. Amsterdam 1980. | MR
[5] L. Nebeský: A characterization of the set of all shortest paths in a connected graph. Mathematica Bohemica 119 (1994), 15–20. | MR
[6] L. Nebeský: A characterization of the interval function of a connected graph. Czechoslovak Math. J. 44 (119) (1994), 173–178. | MR
[7] L. Nebeský: Visibilities and sets of shortest paths in a connected graph. Czechoslovak Math. J. 45(120) (1995), 563–570. | MR
[8] L. Nebeský: On the set of all shortest paths of a given length in a connected graph. Czechoslovak Math. J. 46(121) (1996), 155–160. | MR