Geodesics and steps in a connected graph
Czechoslovak Mathematical Journal, Tome 47 (1997) no. 1, pp. 149-161 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 05C12, 05C38
@article{CMJ_1997_47_1_a11,
     author = {Nebesk\'y, Ladislav},
     title = {Geodesics and steps in a connected graph},
     journal = {Czechoslovak Mathematical Journal},
     pages = {149--161},
     year = {1997},
     volume = {47},
     number = {1},
     mrnumber = {1435613},
     zbl = {0898.05041},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1997_47_1_a11/}
}
TY  - JOUR
AU  - Nebeský, Ladislav
TI  - Geodesics and steps in a connected graph
JO  - Czechoslovak Mathematical Journal
PY  - 1997
SP  - 149
EP  - 161
VL  - 47
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_1997_47_1_a11/
LA  - en
ID  - CMJ_1997_47_1_a11
ER  - 
%0 Journal Article
%A Nebeský, Ladislav
%T Geodesics and steps in a connected graph
%J Czechoslovak Mathematical Journal
%D 1997
%P 149-161
%V 47
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_1997_47_1_a11/
%G en
%F CMJ_1997_47_1_a11
Nebeský, Ladislav. Geodesics and steps in a connected graph. Czechoslovak Mathematical Journal, Tome 47 (1997) no. 1, pp. 149-161. http://geodesic.mathdoc.fr/item/CMJ_1997_47_1_a11/

[1] M. Behzad, G. Chartrand and L. Lesniak-Foster: Graphs & Digraphs. Prindle, Weber & Schmidt, Boston 1979. | MR

[2] F. Harary: Graph Theory. Addison-Wesley, Reading (Mass.) 1969. | MR | Zbl

[3] D. C. Kay and G. Chartrand: A characterization of certain ptolemaic graphs. Canad. J. Math. 17 (1965), 342–346. | DOI | MR

[4] H. M. Mulder: The Interval Function of a Graph. Mathematisch Centrum. Amsterdam 1980. | MR

[5] L. Nebeský: A characterization of the set of all shortest paths in a connected graph. Mathematica Bohemica 119 (1994), 15–20. | MR

[6] L. Nebeský: A characterization of the interval function of a connected graph. Czechoslovak Math. J. 44 (119) (1994), 173–178. | MR

[7] L. Nebeský: Visibilities and sets of shortest paths in a connected graph. Czechoslovak Math. J. 45(120) (1995), 563–570. | MR

[8] L. Nebeský: On the set of all shortest paths of a given length in a connected graph. Czechoslovak Math. J. 46(121) (1996), 155–160. | MR