Keywords: spaces of linear and compact operators; non existence of projections; copies of $c_0$; Approximation properties; non existence of norm one projection; Hahn-Banach extensions
@article{CMJ_1997_47_1_a1,
author = {Emmanuele, G. and John, K.},
title = {Uncomplementability of spaces of compact operators in larger spaces of operators},
journal = {Czechoslovak Mathematical Journal},
pages = {19--32},
year = {1997},
volume = {47},
number = {1},
mrnumber = {1435603},
zbl = {0903.46006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1997_47_1_a1/}
}
Emmanuele, G.; John, K. Uncomplementability of spaces of compact operators in larger spaces of operators. Czechoslovak Mathematical Journal, Tome 47 (1997) no. 1, pp. 19-32. http://geodesic.mathdoc.fr/item/CMJ_1997_47_1_a1/
[BD] J. Bourgain, F. Delbaen: A class of special ${\mathcal L}_\infty $ spaces. Acta Math. 145 (1980), 155–176. | DOI | MR
[B] R. D. Bourgin: Geometric aspects of convex sets with the Radon-Nikodym property LNM 993. Springer Verlag, 1983. | MR
[DU] J. Diestel, J. J. Uhl, jr.: Vector Measures. Math. Surveys 15, Amer. Math. Soc., 1977. | MR
[DS] N. Dunford, J. T. Schwartz: Linear Operators, part I. Interscience, 1958.
[E1] G. Emmanuele: About certain isomorphic properties of Banach spaces in projective tensor products. Extracta Math. 5 (1) (1990), 23–25.
[E2] G. Emmanuele: Remarks on the uncomplemented subspace $W(E, F)$. J. Funct. Analysis 99 (1) (1991), 125–130. | DOI | MR | Zbl
[E3] G. Emmanuele: A remark on the containment of $c_0$ in spaces of compact operators. Math. Proc. Cambridge Phil. Soc. 111 (1992), 331–335. | DOI | MR
[E4] G. Emmanuele: About the position of $K_{w^\ast }(X^\ast , Y)$ inside $L_{w^\ast }(X^\ast , Y)$. Atti Seminario Matematico e Fisico di Modena, XLII (1994), 123–133. | MR
[E5] G. Emmanuele: Answer to a question by M. Feder about $K(X, Y)$. Revista Mat. Universidad Complutense Madrid 6 (1993), 263–266. | MR | Zbl
[F1] M. Feder: On subspaces of spaces with an unconditional basis and spaces of operators. Illinois J. Math. 24 (1980), 196–205. | DOI | MR | Zbl
[F2] M. Feder: On the non-existence of a projection onto the spaces of compact operators. Canad. Math. Bull. 25 (1982), 78–81. | DOI | MR
[GKS] G. Godefroy, N. J. Kalton, P. D. Saphar: Unconditional ideals in Banach spaces. Studia Math. 104 (1) (1993), 13–59. | MR
[J1] K. John: On the uncomplemented subspace $K(X, Y)$. Czechoslovak Math. Journal 42 (1992), 167–173. | MR | Zbl
[J2] K. John: On the space $K(P, P^\ast )$ of compact operators on Pisier space $P$. Note di Matematica 72 (1992), 69–75. | MR
[Jo] J. Johnson: Remarks on Banach spaces of compact operators. J. Funct. Analysis 32 (1979), 304–311. | DOI | MR | Zbl
[JRZ] W. B. Johnson, H. P. Rosenthal, M. Zippin: On bases, finite dimensional decompositions and weaker structures in Banach spaces. Israel J. Math. 9 (1971), 488–506. | DOI | MR
[Ka1] N. J. Kalton: Spaces of compact operators. Math. Annalen 208 (1974), 267–278. | DOI | MR | Zbl
[Ka2] N. J. Kalton: M-ideals of compact operators. Illinois J. Math. 37 (1) (1993), 147–169. | DOI | MR | Zbl
[Le] D. R. Lewis: Conditional weak compactness in certain inductive tensor products. Math. Annalen 201 (1973), 201–209. | DOI | MR | Zbl
[Li1] Å. Lima: Uniqueness of Hahn-Banach extensions and lifting of linear dependence. Math. Scandinavica 53 (1983), 97–113. | DOI | MR
[Li2] Å. Lima: The metric approximation property, norm one projections and intersection properties of balls. Israel J. Math (to appear). | MR | Zbl
[LORW] Å. Lima, E. Oja, T. S. S. R. K. Rao, D. Werner: Geometry of operator spaces. Preprint 1993. | MR
[LTI] J. Lindenstrauss, L. Tzafriri: Classical Banach Spaces, Sequence Spaces EMG 92. Springer Verlag, 1977. | MR
[LTII] J. Lindenstrauss, L. Tzafriri: Classical Banach Spaces, Function Spaces EMG 97. Springer Verlag, 1979. | MR
[NP] I. Namioka, R. R. Phelps: Banach spaces which are Asplund spaces. Duke Math. J. 42 (1975), 735–750. | DOI | MR
[P] A. Pelczynski: Banach spaces on which every unconditionally converging operator is weakly compact. Bull. Acad. Polon. Sci. 10 (1962), 641–648. | MR | Zbl
[Ru] W. Ruess: Duality and Geometry of spaces of compact operators. Functional Analysis: Surveys and Recent Results III, Math. Studies 90, North Holland, 1984. | MR | Zbl
[Wi] G. Willis: The compact approximation property does not imply the approximation property. Studia Math. 103 (1) (1992), 99–108. | DOI | MR | Zbl