Inversion of a polynomial operator with the Maslov–Chebyshev symbol
Contemporary Mathematics. Fundamental Directions, Proceedings of the Voronezh Winter Mathematical Krein School — 2024, Tome 70 (2024) no. 4, pp. 626-635 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Maslov–Heaviside method is applied to the inversion of a polynomial operator by the Maslov–Chebyshev symbol introduced in the paper. The result is applied to the proof of a theorem on the Bessel operator in the Stepanov spaces $S_p(\mathbb{R}^n),$ $1$ $n=1,2,\dots.$ This significantly expands the scope of application of operator methods to the study of the correct solvability of equations with the Laplace operator, usually studied in $L_p$ spaces.
Keywords: Stepanov spaces, Bessel operator, Maxwell–Fejér operator symbol, Weierstrass semigroup, correct solvability, Chebyshev polynomials, strongly continuous semigroup
Mots-clés : polyharmonic equation.
@article{CMFD_2024_70_4_a8,
     author = {A. V. Kostin},
     title = {Inversion of a polynomial operator with the {Maslov{\textendash}Chebyshev} symbol},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {626--635},
     year = {2024},
     volume = {70},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a8/}
}
TY  - JOUR
AU  - A. V. Kostin
TI  - Inversion of a polynomial operator with the Maslov–Chebyshev symbol
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2024
SP  - 626
EP  - 635
VL  - 70
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a8/
LA  - ru
ID  - CMFD_2024_70_4_a8
ER  - 
%0 Journal Article
%A A. V. Kostin
%T Inversion of a polynomial operator with the Maslov–Chebyshev symbol
%J Contemporary Mathematics. Fundamental Directions
%D 2024
%P 626-635
%V 70
%N 4
%U http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a8/
%G ru
%F CMFD_2024_70_4_a8
A. V. Kostin. Inversion of a polynomial operator with the Maslov–Chebyshev symbol. Contemporary Mathematics. Fundamental Directions, Proceedings of the Voronezh Winter Mathematical Krein School — 2024, Tome 70 (2024) no. 4, pp. 626-635. http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a8/

[1] V. S. Vladimirov, Equations of Mathematical Physics, Nauka, M., 1967 (in Russian) | MR

[2] K. Iosida, Functional Analysis, Textbook, Mir, M., 1967 | MR

[3] Ya. B. Zel'dovich, Elements of Applied Mathematics, Nauka, M., 1972 (in Russian) | MR

[4] M. A. Krasnosel'skii, Integral Operators in Spaces of Summable Functions, Nauka, M., 1967 (in Russian)

[5] S. G. Kreyn (ed.), Functional Analysis, Nauka, M., 1972 (in Russian) | MR

[6] A. N. Kolmogorov, Elements of the Theory of Functions and Functional Analysis, Nauka, M., 1976 (in Russian) | MR

[7] A. V. Kostin, To the Theory of Stepanov Function Spaces, VGU, Voronezh, 2007 (in Russian)

[8] V. A. Kostin, “Maslov–Heaviside operator method and $C_0$-operator Duhamel's integral”, Rep. Russ. Acad. Sci., 452:4 (2013), 367–370 (in Russian) | DOI | Zbl

[9] V. P. Maslov, Operator Methods, Nauka, M., 1973 (in Russian) | MR

[10] S. G. Samko, Integrals and Derivatives of Fractional Order and Some of Their Applications, Nauka i tekhnika, Minsk, 1987 (in Russian)

[11] S. L. Sobolev, Equations of Mathematical Physics, Nauka, M., 1966 (in Russian) | MR

[12] S. L. Sobolev, Cubature Formulas, Inst. Mat., Novosibirsk, 1996 (in Russian)

[13] V. V. Stepanov, “On the metric in the space of almost periodic functions $S_2$”, Rep. Acad. Sci. USSR, 64:3 (1949), 171 (in Russian) | Zbl

[14] E. Hille and R. Phillips, Functional Analysis and Semi-groups, Russian translation, Inostr. Lit., M., 1962 | MR