Interpolation by Earl's method in the space of functions of semi-formal order
Contemporary Mathematics. Fundamental Directions, Proceedings of the Voronezh Winter Mathematical Krein School — 2024, Tome 70 (2024) no. 4, pp. 597-609 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the problem of simple free interpolation in the space of functions of finite order and normal type in a half-plane. We propose its solution by the method of shifting interpolation nodes. This solution is based on Earl's method, who solved the problem of free interpolation in the space of analytic bounded functions in a unit circle.
Keywords: free interpolation, finite order function, shift of interpolation nodes, Earl's method.
@article{CMFD_2024_70_4_a6,
     author = {M. V. Kabanko and K. G. Malyutin},
     title = {Interpolation by {Earl's} method in the space of functions of semi-formal order},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {597--609},
     year = {2024},
     volume = {70},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a6/}
}
TY  - JOUR
AU  - M. V. Kabanko
AU  - K. G. Malyutin
TI  - Interpolation by Earl's method in the space of functions of semi-formal order
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2024
SP  - 597
EP  - 609
VL  - 70
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a6/
LA  - ru
ID  - CMFD_2024_70_4_a6
ER  - 
%0 Journal Article
%A M. V. Kabanko
%A K. G. Malyutin
%T Interpolation by Earl's method in the space of functions of semi-formal order
%J Contemporary Mathematics. Fundamental Directions
%D 2024
%P 597-609
%V 70
%N 4
%U http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a6/
%G ru
%F CMFD_2024_70_4_a6
M. V. Kabanko; K. G. Malyutin. Interpolation by Earl's method in the space of functions of semi-formal order. Contemporary Mathematics. Fundamental Directions, Proceedings of the Voronezh Winter Mathematical Krein School — 2024, Tome 70 (2024) no. 4, pp. 597-609. http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a6/

[1] S. A. Vinogradov and V. P. Khavin, “Free interpolation in $H^\infty$ and some other classes of functions. I”, Notes Sci. Semin. Leningrad Dept. Math. Inst. Acad. Sci., 47, 1974, 15–54 (in Russian) | Zbl

[2] S. A. Vinogradov and V. P. Khavin, “Free interpolation in $H^\infty$ and some other classes of functions. II”, Notes Sci. Semin. Leningrad Dept. Math. Inst. Acad. Sci., 56, 1974, 12–58 (in Russian)

[3] N. V. Govorov, Riemann Boundary-Value Problem with Infinite Index, Nauka, M., 1986 (in Russian)

[4] A. F. Grishin, “Continuity and asymptotic continuity of subharmonic functions”, Math. Phys. Anal. Geom., 1:2 (1994), 193–215 (in Russian) | MR | Zbl

[5] B. Ya. Levin, Distribution of Roots of Entire Functions, GITTL, M., 1956 (in Russian)

[6] A. F. Leont'ev, Exponent Series, Nauka, M., 1976 (in Russian) | MR

[7] K. G. Malyutin, “The problem of multiple interpolation in a half-plane in the class of analytic functions of finite order and normal type”, Math. Digest, 184:2 (1993), 129–144 (in Russian) | MR | Zbl

[8] K. G. Malyutin, “Modified Johns method for solving problems of multiple interpolation in a half-plane”, Mathematical Forum. Research in Mathematical Analysis, v. 3, VNTs RAN and RSO-A, Vladikavkaz, 2009, 143–164 (in Russian)

[9] K. G. Malyutin and O. A. Bozhenko, “The problem of multiple interpolation in the class of analytic functions of zero order in a half-plane”, Ufa Math. J., 6:1 (2014), 18–29 (in Russian) | MR

[10] N. T. Uyen, “Interpolation with multiple nodes in the half-plane in the class of analytic functions of finite order and normal type”, Theor. Funct. Funct. Anal. Appl., 31 (1979), 119–129 (in Russian) | Zbl

[11] Carleson L., “An interpolation problem for bounded analytic functions”, Am. J. Math., 80 (1958), 921–930 | DOI | MR | Zbl

[12] Earl J. P., “On the interpolation of bounded sequences by bounded functions”, J. London Math. Soc., 2:3 (1970), 544–548 | DOI | MR | Zbl