The problem of existence of feedback control for one nonlinear viscous fractional Voigt model
Contemporary Mathematics. Fundamental Directions, Proceedings of the Voronezh Winter Mathematical Krein School — 2024, Tome 70 (2024) no. 4, pp. 586-596 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, we study the feedback control problem for a mathematical model describing the motion of a nonlinear viscous fluid with infinite memory along the trajectories of the velocity field. The existence of an optimal control that gives a minimum to a given bounded and lower semicontinuous quality functional is proved. The proof uses the approximation-topological approach, the theory of regular Lagrangian flows, and the theory of topological degree for multivalued vector fields.
Keywords: feedback control, optimal control, nonlinear viscous fluid, approximation-topological approach, regular Lagrangian flow, topological degree.
@article{CMFD_2024_70_4_a5,
     author = {A. V. Zvyagin and E. I. Kostenko},
     title = {The problem of existence of feedback control for one nonlinear viscous fractional {Voigt} model},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {586--596},
     year = {2024},
     volume = {70},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a5/}
}
TY  - JOUR
AU  - A. V. Zvyagin
AU  - E. I. Kostenko
TI  - The problem of existence of feedback control for one nonlinear viscous fractional Voigt model
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2024
SP  - 586
EP  - 596
VL  - 70
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a5/
LA  - ru
ID  - CMFD_2024_70_4_a5
ER  - 
%0 Journal Article
%A A. V. Zvyagin
%A E. I. Kostenko
%T The problem of existence of feedback control for one nonlinear viscous fractional Voigt model
%J Contemporary Mathematics. Fundamental Directions
%D 2024
%P 586-596
%V 70
%N 4
%U http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a5/
%G ru
%F CMFD_2024_70_4_a5
A. V. Zvyagin; E. I. Kostenko. The problem of existence of feedback control for one nonlinear viscous fractional Voigt model. Contemporary Mathematics. Fundamental Directions, Proceedings of the Voronezh Winter Mathematical Krein School — 2024, Tome 70 (2024) no. 4, pp. 586-596. http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a5/

[1] G. Astarita and G. Marrucci, Principles of Non-Newtonian Fluid Mechanics, Russian translation, Mir, M., 1978

[2] G. V. Vinogradov and A. Ya. Malkin, Rheology of Polymers, Khimiya, M., 1977 (in Russian)

[3] V. T. Dmitrienko and V. G. Zvyagin, “Homotopy classification of one class of continuous mappings”, Math. Notes, 31:5 (1982), 801–812 (in Russian) | MR | Zbl

[4] A. V. Zvyagin, “Optimal feedback control for the Leray alpha model and the Navier–Stokes alpha model”, Rep. Russ. Acad. Sci., 486:5 (2019), 527–530 (in Russian) | DOI | Zbl

[5] A. V. Zvyagin and E. I. Kostenko, “On the existence of feedback control for a fractional Voigt model”, Differ. Equ., 59:12 (2023), 1710–1714 (in Russian) | DOI | MR | Zbl

[6] V. G. Zvyagin and V. T. Dmitrienko, “On weak solutions of a regularized model of viscoelastic fluid”, Differ. Equ., 38:12 (2002), 1633–1645 (in Russian) | MR | Zbl

[7] V. G. Zvyagin, A. V. Zvyagin, and M. V. Turbin, “Optimal feedback control for the Bingham model with periodic conditions on spatial variables”, Notes Sci. Semin. St. Petersburg Dept. Math. Inst. Russ. Acad. Sci., 477, 2018, 54–86 (in Russian)

[8] V. G. Zvyagin and M. V. Turbin, Mathematical Issues of Hydrodynamics of Viscoelastic Media, KRASAND URSS, M., 2012 (in Russian)

[9] B. N. Sadovskiy, “Limit-compact and condensing operators”, Progr. Math. Sci., 27:1 (1972), 81–146 (in Russian) | MR | Zbl

[10] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Integrals and derivatives of fractional order and some of their applications, Nauka i Tekhnika, Minsk, 1987 (in Russian)

[11] A. V. Fursikov, Optimal Control of Distributed Systems. Theory and Applications, Nauchnaya kniga, Novosibirsk, 1999 (in Russian)

[12] Crippa G., “The ordinary differential equation with non-Lipschitz vector fields”, Boll. Unione Mat. Ital., 1:2 (2008), 333–348 | MR | Zbl

[13] Crippa G., de Lellis C., “Estimates and regularity results for the diPerna—Lions flow”, J. Reine Angew. Math., 616 (2008), 15–46 | MR | Zbl

[14] DiPerna R. J., Lions P. L., “Ordinary differential equations, transport theory and Sobolev spaces”, Invent. Math., 98:3 (1989), 511–547 | DOI | MR | Zbl

[15] Kostenko E. I., “Investigation of weak solvability of one model nonlinear viscosity fluid”, Lobachevskii J. Math., 45 (2024), 1421–1441 | DOI | MR | Zbl

[16] Temam R., Navier—Stokes equations. Theory and numerical analysis, North-Holland, Amsterdam, 1977 | MR | Zbl

[17] Zvyagin A. V., Kostenko E. I., “Investigation of the weak solvability of one viscoelastic fractional Voigt model”, Mathematics, 21:11 (2023), 2272 | MR

[18] Zvyagin V. G., Kostenko E. I., “Investigation of the weak solvability of one fractional model with infinite memory”, Lobachevskii J. Math., 44:3 (2023), 969–988 | DOI | MR | Zbl

[19] Zvyagin V., Obukhovskii V., Zvyagin A., “On inclusions with multivalued operators and their applications to some optimization problems”, J. Fixed Point Theory Appl., 16 (2014), 27–82 | DOI | MR | Zbl

[20] Zvyagin V., Orlov V., “Weak solvability of fractional Voigt model of viscoelasticity”, Discrete Contin. Dyn. Syst., 23:8 (2018), 3855–3877 | MR | Zbl