Interpolation of periodic functions and construction of biorthogonal systems using uniform shifts of the theta function
Contemporary Mathematics. Fundamental Directions, Proceedings of the Voronezh Winter Mathematical Krein School — 2024, Tome 70 (2024) no. 4, pp. 575-585 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problems of interpolation of periodic functions and construction of biorthogonal systems are considered. Uniform shifts of the third Jacobi theta function are used as a basis. Explicit formulas for the nodal function and the function generating the biorthogonal system are obtained. Exact values of the lower and upper Riesz constants are found.
Keywords: periodic function, theta function, integer shift, nodal function
Mots-clés : biorthogonal system, interpolation, Riesz constant.
@article{CMFD_2024_70_4_a4,
     author = {M. L. Zhadanova},
     title = {Interpolation of periodic functions and construction of biorthogonal systems using uniform shifts of the theta function},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {575--585},
     year = {2024},
     volume = {70},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a4/}
}
TY  - JOUR
AU  - M. L. Zhadanova
TI  - Interpolation of periodic functions and construction of biorthogonal systems using uniform shifts of the theta function
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2024
SP  - 575
EP  - 585
VL  - 70
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a4/
LA  - ru
ID  - CMFD_2024_70_4_a4
ER  - 
%0 Journal Article
%A M. L. Zhadanova
%T Interpolation of periodic functions and construction of biorthogonal systems using uniform shifts of the theta function
%J Contemporary Mathematics. Fundamental Directions
%D 2024
%P 575-585
%V 70
%N 4
%U http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a4/
%G ru
%F CMFD_2024_70_4_a4
M. L. Zhadanova. Interpolation of periodic functions and construction of biorthogonal systems using uniform shifts of the theta function. Contemporary Mathematics. Fundamental Directions, Proceedings of the Voronezh Winter Mathematical Krein School — 2024, Tome 70 (2024) no. 4, pp. 575-585. http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a4/

[1] N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobel'kov, Numerical Methods, Nauka, M., 1987 (in Russian) | MR

[2] M. L. Zhadanova, E. A. Kiselev, I. Ya. Novikov, and S. N. Ushakov, “Hermitian interpolation using window systems generated by uniform shifts of the Gaussian function”, Math. Notes, 114:6 (2023), 936–939 (in Russian) | DOI | MR | Zbl

[3] B. S. Kashin and A. A. Saakyan, Orthogonal Series, AFTs, M., 1999 (in Russian)

[4] E. A. Kiselev, L. A. Minin, I. Ya. Novikov, and S. M. Sitnik, “On Riesz constants for some systems of integer shifts”, Math. Notes, 96:2 (2014), 239–250 (in Russian) | DOI | Zbl

[5] E. A. Kiselev, L. A. Minin, I. Ya. Novikov, and S. N. Ushakov, “Localization of window functions of dual and rigid Gabor frames generated by a Gaussian function”, Math. Digest, 215:3 (2024), 80–99 (in Russian) | DOI | MR | Zbl

[6] L. A. Minin, S. M. Sitnik, and S. N. Ushakov, “Behavior of the coefficients of nodal functions constructed from uniform shifts of Gaussian and Lorentzian functions”, Sci. Bull. Belgorod State Univ. Ser. Math. Phys., 183:12 (2014), 214–217 (in Russian)

[7] I. Ya. Novikov, V. Yu. Protasov, and M. A. Skopina, Wavelet Theory, Fizmatlit, M., 2005 (in Russian)

[8] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Russian translation, v. Transcendental Functions, Fizmatlit, M., 1963

[9] Ch. Chui, An Introduction to Wavelets, Russian translation, Mir, M., 2001

[10] Boyd J. P., Xiao J., “Periodized radial basis functions. I: Theory”, Appl. Numer. Math., 86 (2013), 43–73 | MR

[11] Christensen O., An introduction to frames and Riesz bases, Birkhäuser/Springer, Basel, 2016 | MR | Zbl

[12] Faulhuber M., Steinerberger S., “Maximal polarization for periodic configurations on the real line”, Int. Math. Res. Not. IMRN, 2024, 1–30 | MR

[13] Hubbert S., Mueller S., “Interpolation with circular basis functions”, Numer. Algorithms, 42:1 (2006), 75–90 | DOI | MR | Zbl

[14] Lawden D. F., Elliptic functions and applications, Springer, New York, 1989 | MR | Zbl

[15] Maz'ya V., Schmidt G., Approximate approximations, Am. Math. Soc., New York, 2007 | MR

[16] Olver F. W. J., Lozier D. W., Boisvert R. F., Clark C. W., NIST handbook of mathematical functions, Cambridge Univ. Press, Cambridge, 2010 | MR | Zbl

[17] Schlumprecht Th., Sivakumar N., “On the sampling and recovery of bandlimited functions via scattered translates of the Gaussian”, J. Approx. Theory, 151:1 (2009), 128–153 | DOI | MR