Mots-clés : biorthogonal system, interpolation, Riesz constant.
@article{CMFD_2024_70_4_a4,
author = {M. L. Zhadanova},
title = {Interpolation of periodic functions and construction of biorthogonal systems using uniform shifts of the theta function},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {575--585},
year = {2024},
volume = {70},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a4/}
}
TY - JOUR AU - M. L. Zhadanova TI - Interpolation of periodic functions and construction of biorthogonal systems using uniform shifts of the theta function JO - Contemporary Mathematics. Fundamental Directions PY - 2024 SP - 575 EP - 585 VL - 70 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a4/ LA - ru ID - CMFD_2024_70_4_a4 ER -
%0 Journal Article %A M. L. Zhadanova %T Interpolation of periodic functions and construction of biorthogonal systems using uniform shifts of the theta function %J Contemporary Mathematics. Fundamental Directions %D 2024 %P 575-585 %V 70 %N 4 %U http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a4/ %G ru %F CMFD_2024_70_4_a4
M. L. Zhadanova. Interpolation of periodic functions and construction of biorthogonal systems using uniform shifts of the theta function. Contemporary Mathematics. Fundamental Directions, Proceedings of the Voronezh Winter Mathematical Krein School — 2024, Tome 70 (2024) no. 4, pp. 575-585. http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a4/
[1] N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobel'kov, Numerical Methods, Nauka, M., 1987 (in Russian) | MR
[2] M. L. Zhadanova, E. A. Kiselev, I. Ya. Novikov, and S. N. Ushakov, “Hermitian interpolation using window systems generated by uniform shifts of the Gaussian function”, Math. Notes, 114:6 (2023), 936–939 (in Russian) | DOI | MR | Zbl
[3] B. S. Kashin and A. A. Saakyan, Orthogonal Series, AFTs, M., 1999 (in Russian)
[4] E. A. Kiselev, L. A. Minin, I. Ya. Novikov, and S. M. Sitnik, “On Riesz constants for some systems of integer shifts”, Math. Notes, 96:2 (2014), 239–250 (in Russian) | DOI | Zbl
[5] E. A. Kiselev, L. A. Minin, I. Ya. Novikov, and S. N. Ushakov, “Localization of window functions of dual and rigid Gabor frames generated by a Gaussian function”, Math. Digest, 215:3 (2024), 80–99 (in Russian) | DOI | MR | Zbl
[6] L. A. Minin, S. M. Sitnik, and S. N. Ushakov, “Behavior of the coefficients of nodal functions constructed from uniform shifts of Gaussian and Lorentzian functions”, Sci. Bull. Belgorod State Univ. Ser. Math. Phys., 183:12 (2014), 214–217 (in Russian)
[7] I. Ya. Novikov, V. Yu. Protasov, and M. A. Skopina, Wavelet Theory, Fizmatlit, M., 2005 (in Russian)
[8] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Russian translation, v. Transcendental Functions, Fizmatlit, M., 1963
[9] Ch. Chui, An Introduction to Wavelets, Russian translation, Mir, M., 2001
[10] Boyd J. P., Xiao J., “Periodized radial basis functions. I: Theory”, Appl. Numer. Math., 86 (2013), 43–73 | MR
[11] Christensen O., An introduction to frames and Riesz bases, Birkhäuser/Springer, Basel, 2016 | MR | Zbl
[12] Faulhuber M., Steinerberger S., “Maximal polarization for periodic configurations on the real line”, Int. Math. Res. Not. IMRN, 2024, 1–30 | MR
[13] Hubbert S., Mueller S., “Interpolation with circular basis functions”, Numer. Algorithms, 42:1 (2006), 75–90 | DOI | MR | Zbl
[14] Lawden D. F., Elliptic functions and applications, Springer, New York, 1989 | MR | Zbl
[15] Maz'ya V., Schmidt G., Approximate approximations, Am. Math. Soc., New York, 2007 | MR
[16] Olver F. W. J., Lozier D. W., Boisvert R. F., Clark C. W., NIST handbook of mathematical functions, Cambridge Univ. Press, Cambridge, 2010 | MR | Zbl
[17] Schlumprecht Th., Sivakumar N., “On the sampling and recovery of bandlimited functions via scattered translates of the Gaussian”, J. Approx. Theory, 151:1 (2009), 128–153 | DOI | MR