@article{CMFD_2024_70_4_a3,
author = {D. J. Joseph},
title = {Integral inequalities for trigonometric polynomials in periodic {Morrey} spaces},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {561--574},
year = {2024},
volume = {70},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a3/}
}
D. J. Joseph. Integral inequalities for trigonometric polynomials in periodic Morrey spaces. Contemporary Mathematics. Fundamental Directions, Proceedings of the Voronezh Winter Mathematical Krein School — 2024, Tome 70 (2024) no. 4, pp. 561-574. http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a3/
[1] V. I. Burenkov and D. J. Joseph, “Integral inequalities for entire functions of exponential type in Morrey spaces”, Proc. Math. Inst. Russ. Acad. Sci., 323 (2023), 87–106 (in Russian) | DOI | Zbl
[2] V. I. Burenkov and T. V. Tararykova, “Analogue of Young's inequality for convolutions of functions for general Morrey-type spaces”, Proc. Math. Inst. Russ. Acad. Sci., 293 (2016), 113–132 (in Russian) | DOI | Zbl
[3] S. M. Nikol'skii, Approximation of Functions of Several Variables and Embedding Theorems, Nauka, M., 1977 (in Russian) | MR
[4] Burenkov V. I., Joseph D. J., “Inequalities for entire functions of exponential type in Morrey spaces”, Eurasian Math. J., 13:3 (2022), 92–99 | DOI | MR | Zbl
[5] Burenkov V. I., Joseph D. J., “Inequalities for trigonometric polynomials in periodic Morrey spaces”, Eurasian Math. J., 15:2 (2024), 92–100 | DOI | MR | Zbl
[6] Morrey C. D., “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Am. Math. Soc., 43:1 (1938), 126–166 | DOI | MR | Zbl
[7] Temlyakov V., Multivariate approximation, Cambridge University Press, Cambridge, 2018 | MR | Zbl