Unimodality of the probability distribution of the extensive functional of samples of a random sequence
Contemporary Mathematics. Fundamental Directions, Proceedings of the Voronezh Winter Mathematical Krein School — 2024, Tome 70 (2024) no. 4, pp. 542-560 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We establish a criterion for the unimodality of the probability distribution of a functional that is represented by the sum of a set of independent identically distributed random nonnegative variables ${\tilde x}_k$ with a random number of terms distributed according to Poisson. The general distribution of terms ${\tilde x}_k$ is concentrated on the interval $[0, 1]$ and is such that $\mathrm{Pr}\,\{{\tilde x}_k = 0\} \ne 0.$ Its absolutely continuous part is asymptotically close to a uniform distribution. We introduce the concept of smoothing functions and establish an explicit form of the distribution of any fixed number of terms uniformly distributed on $[0, 1].$
Keywords: sum of independent identically distributed random variables, unimodality of probability distribution, smoothing function, single-peak function.
@article{CMFD_2024_70_4_a2,
     author = {Yu. P. Virchenko and A. M. Tevolde},
     title = {Unimodality of the probability distribution of the extensive functional of samples of a random sequence},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {542--560},
     year = {2024},
     volume = {70},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a2/}
}
TY  - JOUR
AU  - Yu. P. Virchenko
AU  - A. M. Tevolde
TI  - Unimodality of the probability distribution of the extensive functional of samples of a random sequence
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2024
SP  - 542
EP  - 560
VL  - 70
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a2/
LA  - ru
ID  - CMFD_2024_70_4_a2
ER  - 
%0 Journal Article
%A Yu. P. Virchenko
%A A. M. Tevolde
%T Unimodality of the probability distribution of the extensive functional of samples of a random sequence
%J Contemporary Mathematics. Fundamental Directions
%D 2024
%P 542-560
%V 70
%N 4
%U http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a2/
%G ru
%F CMFD_2024_70_4_a2
Yu. P. Virchenko; A. M. Tevolde. Unimodality of the probability distribution of the extensive functional of samples of a random sequence. Contemporary Mathematics. Fundamental Directions, Proceedings of the Voronezh Winter Mathematical Krein School — 2024, Tome 70 (2024) no. 4, pp. 542-560. http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a2/

[1] N. K. Bakirov, “Extrema of distributions of quadratic forms from Gaussian variables”, Probab. Theor. Appl., 34:2 (1989), 241–250 (in Russian) | MR

[2] R. P. Braginskii, B. V. Gnedenko, G. M. Zaytseva, and S. A. Molchanov, “Theoretical and statistical study of defect set in enamel-varnish electrical insulating coatings”, Rep. Acad. Sci. USSR, 303:2 (1988), 270–274 (in Russian)

[3] Yu. P. Virchenko and A. D. Novosel'tsev, “Unimodality of probability distributions for maxima of samples of independent Erlang random variables”, Appl. Math. Phys., 51:3 (2019), 366–373 (in Russian)

[4] Yu. P. Virchenko and A. D. Novosel'tsev, “Bifurcation of the distribution of electrical breakdown voltages of enamel-varnish polymer coatings”, Current Issues in Applied Mathematics, Computer Science and Mechanics, Nauch.-issl. publ., Voronezh, 2021, 1530–1534 (in Russian)

[5] D. F. Vysochanskii and Yu. I. Petunin, “Justification of the $3\sigma$ rule for unimodal distributions”, Probab. Theor. Math. Stas., 21 (1980), 25–36 (in Russian)

[6] B. V. Gnedenko, Course in Probability Theory, Librokom, M., 2011 (in Russian)

[7] I. A. Ibragimov, “On the composition of single-peak distributions”, Probab. Theor. Appl., 1:2 (1956), 283–288 (in Russian) | Zbl

[8] E. Lukach, Characteristic Functions, Nauka, M., 1979 (in Russian)

[9] A. Ya. Khinchin, “Ob unimodal'nykh raspredeleniyakh”, Bull. Research Inst. Tomsk Math. Inst., 2:2 (1938), 1–7 (in Russian) | Zbl

[10] Medgyssy P., “On the interconnection between the representation theorems of characteristic functions of unimodal distributions and of convex characteristic functions”, Maguar Tud. Acad. Mat. Kutató Intér. Közl., 8 (1963), 425–430 | MR

[11] Medgyssy P., “On a new class of infinitely divisible functions and related topics”, Studia Sci. Math. Hungar., 2 (1967), 441–446 | MR

[12] Virchenko Yu. P., Mazmanishvili A. S., “Unimodality of a class of distributions connected with complex Ornstein—Uhlenbeck process”, Dokl. Akad. Nauk Ukr. SSR, 1988, no. 1, 55–87 | MR

[13] Virchenko Yu. P., Mazmanishvili A. S., “Essential unimodality of probability distributions of random quadratic functionals”, Dokl. Akad. Nauk Ukr. SSR, 1990, no. 12, 3–4 | MR | Zbl

[14] Virchenko Yu. P., Mazmanishvili A. S., “Essential unimodality of probabilistic distributions for random quadratic functionals”, Cybernet. Systems Anal., 285:2 (1992), 312–315 | DOI | MR

[15] Virchenko Yu. P., Novoseltsev A. D., “Probability distributions unimodality of finite sample extremes of independent Erlang random variables”, J. Phys. Conf. Ser., 1479 (2020), 012104 | DOI

[16] Virchenko Yu. P., Novoseltsev A. D., “Bifurcation of distribution function of electric breakdown voltages of polymer enamel–lacquer coatings”, J. Phys. Conf. Ser., 1902 (2021), 012091 | DOI