On studying the spread model of the HIV/AIDS epidemic
Contemporary Mathematics. Fundamental Directions, Proceedings of the Voronezh Winter Mathematical Krein School — 2024, Tome 70 (2024) no. 4, pp. 691-701 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The aim of this work is to study sufficient conditions for the asymptotic stability of the stationary solution of the initial-boundary value problem for a system of nonlinear partial differential equations describing the growth and spread of the HIV/AIDS epidemic. The above-mentioned model takes into account not only the factors taken into account by classical models, but also includes migration processes.
Keywords: system of nonlinear partial differential equations, initial-boundary value problem, stationary solution, mathematical modeling, spread model of the HIV/AIDS epidemic, migration processes.
@article{CMFD_2024_70_4_a14,
     author = {A. I. Shashkin and M. V. Polovinkina and I. P. Polovinkin},
     title = {On studying the spread model of the {HIV/AIDS} epidemic},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {691--701},
     year = {2024},
     volume = {70},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a14/}
}
TY  - JOUR
AU  - A. I. Shashkin
AU  - M. V. Polovinkina
AU  - I. P. Polovinkin
TI  - On studying the spread model of the HIV/AIDS epidemic
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2024
SP  - 691
EP  - 701
VL  - 70
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a14/
LA  - ru
ID  - CMFD_2024_70_4_a14
ER  - 
%0 Journal Article
%A A. I. Shashkin
%A M. V. Polovinkina
%A I. P. Polovinkin
%T On studying the spread model of the HIV/AIDS epidemic
%J Contemporary Mathematics. Fundamental Directions
%D 2024
%P 691-701
%V 70
%N 4
%U http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a14/
%G ru
%F CMFD_2024_70_4_a14
A. I. Shashkin; M. V. Polovinkina; I. P. Polovinkin. On studying the spread model of the HIV/AIDS epidemic. Contemporary Mathematics. Fundamental Directions, Proceedings of the Voronezh Winter Mathematical Krein School — 2024, Tome 70 (2024) no. 4, pp. 691-701. http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a14/

[1] I. V. Zhukova and E. P. Kolpak, “Mathematical models of malignant tumour”, Bull. S.-Petersburg Univ. Ser. 10. Appl. Math. Inf. Control, 2014, no. 3, 5–18 (in Russian)

[2] V. V. Katrakhov and S. M. Sitnik, “The transmutation method and boundary-value problems for singular elliptic equations”, Contemp. Math. Fundam. Directions, 64, no. 2, 2018, 211–426 (in Russian)

[3] I. A. Kipriyanov, Singular Elliptic Boundary-Value Problems, Nauka, M., 1997 (in Russian) | MR

[4] O. A. Ladyzhenskaya, Boundary-Value Problems of Mathematical Physics, Nauka, M., 1973 (in Russian) | MR

[5] L. N. Lyakhov, $B$-hypersingular integrals and their applications to the description of Kipriyanov functional classes and to integral equations with $B$-potential kernels, LSPU, Lipetsk, 2007 (in Russian)

[6] V. Z. Meshkov, I. P. Polovinkin, and M. E. Semenov, “On the stability of the stationary solution of the Hotelling equation”, Surv. Appl. Industr. Math., 9:1 (2002), 226–227 (in Russian)

[7] V. P. Mikhaylov, Partial Differential Equations, Nauka, M., 1976 (in Russian)

[8] M. V. Polovinkina and I. P. Polovinkin, “About change in the stability character of the trivial solution at the transition from a model with concentrated parameters to a model with distributed parameters”, Appl. Math. Phys., 52:4 (2020), 255–261 (in Russian) | DOI

[9] M. V. Polovinkina and I. P. Polovinkin, “On the stability of stationary states in diffusion models”, Tavr. vestn. inform. i mat., 2 (2021), 88–101 (in Russian)

[10] M. V. Polovinkina, I. P. Polovinkin, and S. A. Rabeeakh, “On the issue of stability of stationary solution in migration models”, Contemporary Mathematics and Its Applications, Alef, Groznyy, 2021, 56–62 (in Russian)

[11] Yu. M. Svirezhev and D. O. Logofet, Stability of Biological Communities, Nauka, M., 1978 (in Russian) | MR

[12] S. M. Sitnik and E. L. Shishkina, Method of Transmutation Operators for Differential Equations with Bessel Operators, Fizmatlit, M., 2019 (in Russian)

[13] Anderson R. M., Medly G. F., May R. M., Johnson A. M., “A preliminary study of the transmission dynamics of the Human Immunodeficiency Virus (HIV), the causative agent of AIDS, IMA”, J. Math. Appl. Med. Biol., 3 (1986), 229–263 | DOI | MR | Zbl

[14] Bachar M., Dorfmayr A., “HIV treatment models with time delay”, C. R. Biol., 327 (2004), 983–994 | DOI

[15] Blower S., “Calculating the consequences: HAART and risky sex”, AIDS, 15 (2001), 1309–1310 | DOI

[16] Cai L., Li X., Ghoshc M., Guod B., “Stability analysis of an HIV/AIDS epidemic model with treatment”, J. Comput. Appl. Math., 229:1 (2009), 313–323 | DOI | MR | Zbl

[17] Capasso V., Serio G., “A generalization of the Kermack—McKendrick deterministic epidemic model”, Math. Biosci., 42 (1978), 43–62 | DOI | MR

[18] Debbouche A., Polovinkina M. V., Polovinkin I. P., Valentim C. A. Jr, David S. A., “On the stability of stationary solutions in diffusion models of oncological processes”, Eur. Phys. J. Plus, 136:1 (2021), 1–18 | DOI | MR

[19] Gilbarg D., Trudinger N. S., Elliptic partial differential equations of second order, Springer, Berlin—Heidelberg—New York—Tokyo, 1983 | MR | Zbl

[20] Gogoleva T. N., Shchepina I. N., Polovinkina M. V., Rabeeakh S. A., “On stability of a stationary solution to the Hotelling migration equation”, J. Phys. Conf. Ser., 1203 (2019), 012041 | DOI | MR

[21] Hethcote H. W., Van Ark J. W., Modelling HIV transmission and AIDS in the United States, Springer, Berlin—Heidelberg, 1992

[22] Hsieh Y. H., Chen C. H., “Modelling the social dynamics of a sex industry: Its implications for spread of HIV/AIDS”, Bull. Math. Biol., 66 (2004), 143–166 | DOI | MR | Zbl

[23] Kermack W. O., McKendrick A. G., “A contribution to the mathematical theory of epidemics”, Proc. R. Soc. London Ser. A. Math. Phys. Eng. Sci., 115:772 (1927), 700–721

[24] Leenheer P. D., Smith H. L., “Virus dynamics: A global analysis”, SIAM J. Appl. Math., 63 (2003), 1313–1327 | DOI | MR | Zbl

[25] Mastahun M., Abdurahman X., “Optimal control of an HIV/AIDS epidemic model with infective immigration and behavioral change”, Appl. Math., 8:1 (2017), 87–109 | DOI

[26] McCluskey C., “A model of HIV/AIDS with staged progression and amelioration”, Math. Biosci., 181 (2003), 1–16 | DOI | MR | Zbl

[27] Nikolaos I. S., Dietz K., Schenzle D., “Analysis of a model for the pathogenesis of AIDS”, Math. Biosci., 145 (1997), 27–46 | DOI | MR | Zbl

[28] Okosun K. O., Makinde O. D., Takaidza I., “Impact of optimal control on the treatment of HIV/AIDS and screening of unaware infectives”, Appl. Math. Model., 37 (2013), 3802–3820 | DOI | MR | Zbl

[29] Perelson A. S., Nelson P. W., “Mathematical analysis of HIV-1 dynamics in vivo”, SIAM Rev., 41:1 (1999), 3–44 | DOI | MR | Zbl

[30] Pinto C. M. A., Carvalho A. R. M., “The impact of pre-exposure prophylaxis (PrEP) and screening on the dynamics of HIV”, J. Comput. Appl. Math., 339 (2018), 231–244 | DOI | MR | Zbl

[31] Polovinkina M. V., “On the effect of transition from a model with concentrated parameters to a model with distributed parameters”, J. Phys. Conf. Ser., 1902 (2021), 012041 | DOI

[32] Polovinkina M. V., Debbouche A., Polovinkin I. P., David S. A., “Stability of stationary solutions for the glioma growth equations with radial or axial symmetries”, Math. Methods Appl. Sci., 44:15 (2021), 12021–12034 | DOI | MR | Zbl

[33] Salman S. M., “Memory and media coverage effect on an HIV/AIDS epidemic model with treatment”, J. Comput. Appl. Math., 385 (2021), 113203 | DOI | MR | Zbl

[34] Samanta S., Chaattopadhyay J., “Effect of awareness program in disease outbreak — a slow-fast dynamics”, Appl. Math. Comput., 237 (2014), 98–109 | MR | Zbl

[35] Samanta S., Rana S., Sharma A., Misra A. K., Chaattopadhyay J., “Effect of awareness programs by media on the epidemic outbreaks: a mathematical model”, Appl. Math. Comput., 219:12 (2013), 6965–6977 | MR | Zbl

[36] Tchuenche J. M., Dube N., Bhunu C. P, Smith R. J., Bauch C. T., “The impact of media coverage on the transmission dynamics of human influenza”, BMC Public Health, 11:1 (2011), S5 | DOI | MR

[37] Wang K., Wang W., Liu X., “Viral infection model with periodic lytic immune response”, Chaos Solitons Fractals, 28:1 (2006), 90–99 | DOI | MR | Zbl

[38] Zhao H., Zhao M., “Global Hopf bifurcation analysis of an susceptible-infective-removed epidemic model incorporating media coverage with time delay”, J. Bio. Dyn., 11:1 (2017), 8–24 | DOI | MR | Zbl

[39] AIDS Epidemic Update 2009, UNAIDS, (accessed on December 12, 2024) https://unaids.org/en/resources/documents/2009/20091124_jc1700_epi_update_2009_en.pdf

[40] Uganda: epidemiological fact sheets on HIV/AIDS and sexually transmitted infections, UNAIDS, (accessed on December 12, 2024) https://data.unaids.org/publications/fact-sheets01/uganda_en.pdf