Linear inverse problems for integro-differential equations in Banach spaces with a bounded operator
Contemporary Mathematics. Fundamental Directions, Proceedings of the Voronezh Winter Mathematical Krein School — 2024, Tome 70 (2024) no. 4, pp. 679-690 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, we study the questions of well-posedness of linear inverse problems for equations in Banach spaces with an integro-differential operator of the Riemann–Liouville type and a bounded operator at the unknown function. A criterion of well-posedness is found for a problem with a constant unknown parameter; in the case of a scalar convolution kernel in an integro-differential operator, this criterion is formulated as conditions for the characteristic function of the inverse problem not to vanish on the spectrum of a bounded operator. Sufficient well-posedness conditions are obtained for a linear inverse problem with a variable unknown parameter. Abstract results are used in studying a model inverse problem for a partial differential equation.
Keywords: inverse problem, integro-differential equation, Riemann–Liouville type operator, well-posedness.
@article{CMFD_2024_70_4_a13,
     author = {V. E. Fedorov and A. D. Godova},
     title = {Linear inverse problems for integro-differential equations in {Banach} spaces with~a~bounded operator},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {679--690},
     year = {2024},
     volume = {70},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a13/}
}
TY  - JOUR
AU  - V. E. Fedorov
AU  - A. D. Godova
TI  - Linear inverse problems for integro-differential equations in Banach spaces with a bounded operator
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2024
SP  - 679
EP  - 690
VL  - 70
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a13/
LA  - ru
ID  - CMFD_2024_70_4_a13
ER  - 
%0 Journal Article
%A V. E. Fedorov
%A A. D. Godova
%T Linear inverse problems for integro-differential equations in Banach spaces with a bounded operator
%J Contemporary Mathematics. Fundamental Directions
%D 2024
%P 679-690
%V 70
%N 4
%U http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a13/
%G ru
%F CMFD_2024_70_4_a13
V. E. Fedorov; A. D. Godova. Linear inverse problems for integro-differential equations in Banach spaces with a bounded operator. Contemporary Mathematics. Fundamental Directions, Proceedings of the Voronezh Winter Mathematical Krein School — 2024, Tome 70 (2024) no. 4, pp. 679-690. http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a13/

[1] N. Dunford and J. T. Schwartz, Linear Operators, Russian translation, v. 1, General Theory, Inostr. Lit., M., 1962

[2] A. M. Nakhushev, Fractional Calculus and Its Applications, Fizmatlit, M., 2003 (in Russian)

[3] A. I. Prilepko, “Semigroup method for solving inverse, nonlocal and nonclassical problems. Forecast–control and forecast–observation of evolutionary equations. I”, Differ. Equ., 41:11 (2005), 1560–1571 (in Russian) | MR | Zbl

[4] A. V. Pskhu, Partial Differential Equations of Fractional Order, Nauka, M., 2005 (in Russian)

[5] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Sci. Publ., Philadelphia, 1993 | MR | Zbl

[6] V. E. Fedorov and A. D. Godova, “Integro-differential equations in Banach spaces and analytic resolving families of operators”, Contemp. Math. Fundam. Directions, 69, no. 1, 2023, 166–184 (in Russian)

[7] Ashurov R. R., Kadirkulov B. J., Turmetov B. Kh., “On the inverse problem of the Bitsadze—Samarskii type for a fractional parabolic equation”, Probl. analiza, 12:3 (2023), 20–40 | MR | Zbl

[8] Atangana A., Baleanu D., “New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model”, Thermal Sci., 20 (2016), 763–769 | DOI

[9] Caputo M., Fabrizio M., “A new definition of fractional derivative without singular kernel”, Progr. Fract. Differ. Appl., 1:2 (2015), 1–13 | MR

[10] Fedorov V. E., Godova A. D., Kien B. T., “Integro-differential equations with bounded operators in Banach spaces”, Bullyu Karaganda Univ. Math. Ser., 2022, no. 2, 93–107 | DOI

[11] Fedorov V. E., Ivanova N. D., “Identification problem for degenerate evolution equations of fractional order”, Fract. Calc. Appl. Anal., 20:3 (2017), 706–721 | DOI | MR | Zbl

[12] Fedorov V. E., Kostić M., “Identification problem for strongly degenerate evolution equations with the Gerasimov—Caputo derivative”, Differ. Equ., 56:12 (2020), 1613–1627 | DOI | MR | Zbl

[13] Fedorov V. E., Nagumanova A. V., Avilovich A. S., “A class of inverse problems for evolution equations with the Riemann—Liouville derivative in the sectorial case”, Math. Methods Appl. Sci., 44:15 (2021), 11961–11969 | DOI | MR | Zbl

[14] Glushak A. V., “On an inverse problem for an abstract differential equation of fractional order”, Math. Notes, 87:5-6 (2010), 654–662 | DOI | MR | Zbl

[15] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and applications of fractional differential equations, Elsevier Science Publ., Amsterdam—Boston—Heidelberg, 2006 | MR | Zbl

[16] Kostić M., Abstract Volterra integro-differential equations, CRC Press, Boca Raton, 2015 | MR | Zbl

[17] Kostin A. B., Piskarev S. I., “Inverse source problem for the abstract fractional differential equation”, J. Inverse Ill-Posed Probl., 29:2 (2021), 267–281 | DOI | MR | Zbl

[18] D. G. Orlovsky, “Parameter determination in a differential equation of fractional order with Riemann—Liouville fractional derivative in a Hilbert space”, J. Siberian Fed. Univ. Ser. Math. Phys., 8:1 (2015), 55–63 | MR | Zbl

[19] Orlovsky D. G., “Determination of the parameter of the differential equation of fractional order with the Caputo derivative in Hilbert space”, J. Phys. Conf. Ser., 1205:1 (2019), 012042 | DOI

[20] Orlovsky D., Piskarev S., “Inverse problem with final overdetermination for time-fractional differential equation in a Banach space”, J. Inverse Ill-Posed Probl., 30:2 (2022), 221–237 | DOI | MR | Zbl

[21] Prabhakar T. R., “A singular integral equation with a generalized Mittag-Leffler function in the kernel”, Yokohama Math. J., 19 (1971), 7–15 | MR | Zbl

[22] Da Prato G., Iannelli M., “Linear integro-differential equations in Banach spaces”, Rend. Semin. Mat. Univ. Padova, 62 (1980), 207–219 | MR | Zbl

[23] Prüss J., Evolutionary integral equations and applications, Springer, Basel, 1993 | MR