On the recovery of the solution of the initial-boundary value problem for the singular heat conduction equation
Contemporary Mathematics. Fundamental Directions, Proceedings of the Voronezh Winter Mathematical Krein School — 2024, Tome 70 (2024) no. 4, pp. 669-678 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We present the results concerning the research of the problem of the best recovery of the solution of the initial-boundary value problem for the heat equation with the Bessel operator in the spatial variable from two approximately known temperature profiles.
Keywords: Bessel operator, optimal recovery, extremal problem, heat equation.
Mots-clés : Fourier–Bessel transform
@article{CMFD_2024_70_4_a12,
     author = {M. V. Polovinkina},
     title = {On the recovery of the solution of the initial-boundary value problem for~the~singular heat conduction equation},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {669--678},
     year = {2024},
     volume = {70},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a12/}
}
TY  - JOUR
AU  - M. V. Polovinkina
TI  - On the recovery of the solution of the initial-boundary value problem for the singular heat conduction equation
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2024
SP  - 669
EP  - 678
VL  - 70
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a12/
LA  - ru
ID  - CMFD_2024_70_4_a12
ER  - 
%0 Journal Article
%A M. V. Polovinkina
%T On the recovery of the solution of the initial-boundary value problem for the singular heat conduction equation
%J Contemporary Mathematics. Fundamental Directions
%D 2024
%P 669-678
%V 70
%N 4
%U http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a12/
%G ru
%F CMFD_2024_70_4_a12
M. V. Polovinkina. On the recovery of the solution of the initial-boundary value problem for the singular heat conduction equation. Contemporary Mathematics. Fundamental Directions, Proceedings of the Voronezh Winter Mathematical Krein School — 2024, Tome 70 (2024) no. 4, pp. 669-678. http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a12/

[1] N. D. Vysk and K. Yu. Osipenko, “Optimal recovery of the solution of the wave equation from inaccurate initial data”, Math. Notes, 81:6 (2007), 803–815 (in Russian) | DOI | MR | Zbl

[2] V. A. Il'in and E. G. Poznyak, Fundamentals of Mathematical Analysis, v. II, Fizmatlit, M., 1967 (in Russian) | MR

[3] V. V. Katrakhov and S. M. Sitnik, “The transmutation method and boundary-value problems for singular differential equations”, Contemp. Math. Fundam. Directions, 64, no. 2, 2018, 211–426 (in Russian) | DOI

[4] I. A. Kipriyanov, Singular Elliptic Boundary-Value Problems, Nauka, M., 1997 (in Russian) | MR

[5] A. V. Kuznetsov, L. N. Lyakhov, I. P. Polovinkin, L. B. Raykhel'gauz, E. L. Sanina, and E. L. Shishkina, j-Bessel Functions and Their Applications in Problems of Mathematical Physics, VGU, Voronezh, 2015 (in Russian)

[6] B. M. Levitan, “Expansion into Fourier series and integrals with Bessel functions”, Progr. Math. Sci., 6:2 (1951), 102–143 (in Russian) | MR | Zbl

[7] L. N. Lyakhov, B-hypersingular Integrals and Their Applications to the Description of the Kupriyanov Functional Classes and to Integral Equations with B-potential Kernels, LGPU, Lipetsk, 2007 (in Russian)

[8] G. G. Magaril-Il'yaev and K. Yu. Osipenko, “Optimal recovery of functions and their derivatives from Fourier coefficients prescribed with an error”, Math. Digest, 193:3 (2002), 79–100 (in Russian) | DOI | MR | Zbl

[9] G. G. Magaril-Il'yaev and K. Yu. Osipenko, “Optimal Recovery of functions and their derivatives from inaccurate information about the spectrum and inequalities for derivatives”, Funct. Anal. Appl., 37:3 (2003), 51–64 (in Russian) | DOI | MR | Zbl

[10] G. G. Magaril-Il'yaev and K. Yu. Osipenko, “Optimal recovery of the solution of the heat equation from inaccurate data”, Sb. Math., 200:5 (2009), 665–682 | DOI | DOI | MR | Zbl

[11] G. G. Magaril-Il'yaev and K. Yu. Osipenko, How best to recover a function from its inaccurately given spectrum?, Math. Notes, 92:1 (2012), 59–67 (in Russian) | DOI | MR | Zbl

[12] G. G. Magaril-Il'yaev, K. Yu. Osipenko, and E. O. Sivkova, “Optimal recovery of pipe temperature from inaccurate measurements”, Proc. Math. Inst. Russ. Acad. Sci., 312 (2021), 216–223 (in Russian) | DOI | Zbl

[13] G. G. Magaril-Il'yaev and E. O. Sivkova, “Best recovery of the Laplace operator of a function from incomplete spectral data”, Sb. Math., 203:4 (2012), 569–580 | DOI | DOI | Zbl

[14] K. Yu. Osipenko, Introduction to Optimal Renewal Theory, A Textbook for Universities, Lan', SPb, 2022 pp. (in Russian)

[15] K. Yu. Osipenko, “On the construction of families of optimal recovery methods for linear operators”, Izv. Math., 88:1 (2024), 92–113 | DOI | DOI | MR | Zbl

[16] M. V. Polovinkina, “On the recovery of the solution of the Cauchy problem for the singular heat equation”, Totals Sci. Tech. Contemp. Math. Appl., 231, 2024, 89–99 (in Russian) | DOI

[17] M. V. Polovinkina and I. P. Polovinkin, “Notes on the recovery of solutions of initial-boundary value problems for singular wave equations”, Appl. Math. Phys., 55:4 (2023), 330–338 (in Russian) | DOI

[18] E. O. Sivkova, “On the optimal recovery of the Laplacian of a function from its inaccurately given Fourier transform”, Vladikavkaz Math. J., 14:4 (2012), 63–72 (in Russian) | MR | Zbl

[19] S. M. Sitnik and E. L. Shishkina, The Transmutation Operators Method for Differential Equations with Bessel Operators, Fizmatlit, M., 2019 (in Russian)

[20] Gradshteyn I. S., Ryzhik I. M., Table of integrals, series, and products, Academic Press, Amsterdam, 2007 | MR | Zbl

[21] Muravnik A. B., “Functional differential parabolic equations: integral transformations and qualitative properties of solutions of the Cauchy problem”, J. Math. Sci. (N. Y.), 216 (2016), 345–496 | DOI | MR | Zbl

[22] Osipenko K. Yu., Wedenskaya E. V., “Optimal recovery of solutions of the generalized heat equation in the unit ball from inaccurate data”, J. Complexity, 23:4–6 (2007), 653–661 | DOI | MR | Zbl

[23] Polovinkina M. V., “Recovery of the operator $\Delta_B$ from its incomplete Fourier—Bessel image”, Lobachevskii J. Math., 41:5 (2020), 839–852 | DOI | MR | Zbl

[24] Polovinkina M. V., Polovinkin I. P., “Recovery of the solution of the singular heat equation from measurement data”, Bol. Soc. Mat. Mexicana (3), 29:41 (2023) | DOI | MR

[25] Sitnik S. M., Fedorov V. E., Polovinkina M. V., Polovinkin I. P., “On recovery of the singular differential Laplace—Bessel operator from the Fourier—Bessel transform”, Mathematics, 11:5 (2023), 1103 | DOI | MR