Multiscale mathematical model of the spread of respiratory infection considering the immune response
Contemporary Mathematics. Fundamental Directions, Proceedings of the Voronezh Winter Mathematical Krein School — 2024, Tome 70 (2024) no. 4, pp. 654-668 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This work presents a multiscale mathematical model of the spread of respiratory viral infection in a tissue and in an organism, taking into account the influence of innate and adaptive immune responses based on systems of reaction-diffusion equations with nonlocal terms. The defining characteristics of such models, which have physiological significance, are the viral replication number, wave propagation speed, and total viral load. In this work, these characteristics are estimated and their dependence on immune response parameters is investigated.
Keywords: viral infection, spreading speed, viral load
Mots-clés : reaction-diffusion equations, immune response.
@article{CMFD_2024_70_4_a11,
     author = {A. S. Mozokhina and K. A. Ryumina},
     title = {Multiscale mathematical model of the spread of respiratory infection considering the immune response},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {654--668},
     year = {2024},
     volume = {70},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a11/}
}
TY  - JOUR
AU  - A. S. Mozokhina
AU  - K. A. Ryumina
TI  - Multiscale mathematical model of the spread of respiratory infection considering the immune response
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2024
SP  - 654
EP  - 668
VL  - 70
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a11/
LA  - ru
ID  - CMFD_2024_70_4_a11
ER  - 
%0 Journal Article
%A A. S. Mozokhina
%A K. A. Ryumina
%T Multiscale mathematical model of the spread of respiratory infection considering the immune response
%J Contemporary Mathematics. Fundamental Directions
%D 2024
%P 654-668
%V 70
%N 4
%U http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a11/
%G ru
%F CMFD_2024_70_4_a11
A. S. Mozokhina; K. A. Ryumina. Multiscale mathematical model of the spread of respiratory infection considering the immune response. Contemporary Mathematics. Fundamental Directions, Proceedings of the Voronezh Winter Mathematical Krein School — 2024, Tome 70 (2024) no. 4, pp. 654-668. http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a11/

[1] Abdullaev A., Odilov A., Ershler M., Volkov A., Lipina T., Gasanova T., Lebedin Y., Babichenko I., Sudarikov A., “Viral load and patterns of SARS-CoV-2 dissemination to the lungs, mediastinal lymph nodes, and spleen of patients with COVID-19 associated lymphopenia”, Viruses, 13:7 (2021), 1410 | DOI

[2] Ait Mahiout L., Mozokhina A., Tokarev A., Volpert V., “Virus replication and competition in a cell culture: Application to the SARS-CoV-2 variants”, Appl. Math. Lett., 133 (2022), 108217 | DOI | MR | Zbl

[3] Ait Mahiout L., Mozokhina A., Tokarev A., Volpert V., “The influence of immune response on spreading of viral infection”, Lobachevskii J. Math., 43:10 (2022), 2699–2713 | DOI | MR | Zbl

[4] Aschman T., Mothes R., Heppner F., Radbruch H., “What SARS-CoV-2 does to our brains”, Perspective, 55:7 (2022), 1159–1172

[5] Cyster J. G., “Visualizing influenza virus capture in the lymph node following vaccination”, Immunol. Cell Biol., 88 (2010), 617–619 | DOI

[6] Fensterl V., Sen G., “Interferons and viral infections”, Biofactors, 35:1 (2009), 14–20 | DOI

[7] Friedrich S. K., Schmitz R., Bergerhausen M., Lang J., Duhan V., Hardt C., Tenbusch M., Prinz M., Asano K., Bhat H., Hamdan T. A., Lang P. A., Lang K. S., “Replication of influenza A virus in secondary lymphatic tissue contributes to innate immune activation”, Pathogens, 10:5 (2021), 622 | DOI

[8] Hamilton-Easton A., Eichelberger M., “Virus-specific antigen presentation by different subsets of cells from lung and mediastinal lymph node tissues of influenza virus-infected mice”, J. Virol., 69:10 (1995), 6359–6366 | DOI

[9] Jordan S., “Innate and adaptive immune responses to SARS-CoV-2 in humans: relevance to acquired immunity and vaccine responses”, Clinic. Experiment. Immunol., 204:3 (2021), 310–320 | DOI

[10] Katze M., He Y., Gale M. Jr., “Viruses and interferon: a fight for supremacy”, Nat. Rev. Immunol., 2:9 (2002), 675–687 | DOI

[11] Marek K., Marciniak-Czochra A., “Modelling and analysis of dynamics of viral infection of cells and of interferon resistance”, J. Math. Anal. Appl., 344:2 (2008), 821–850 | DOI | MR | Zbl

[12] Mauricio L., Marciniak-Czochra A., A reaction-diffusion model for viral infection and immune response, hal-00546034, HAL, 2011

[13] McNab F., Mayer-Barber K., Sher A., Wack A., O'Garra A., “Type I interferons in infectious disease”, Nat. Rev. Immunol., 15:2 (2015), 87–103 | DOI

[14] Mohsen F., Lidsey C., Laurence C., Navin V., Meyer D., “Cytotoxic T lymphocytes targeting a conserved SARS-CoV-2 spike epitope are efficient serial killers”, BioTechniques, 72:4 (2022), 113–120 | DOI | MR

[15] Nelemans T., Kikkert M., “Viral innate immune evasion and the pathogenesis of emerging RNA virus infections”, Viruses, 11:10 (2019), 961 | DOI

[16] Sean Q., Weiming Y., “Mathematical modeling of interaction between innate and adaptive immune responses in COVID-19 and implications for viral pathogenesis”, J. Med. Virol., 92:2 (2020), 1615–1628

[17] Shim M., Kim J., Tenson T., Min Y., Kainov D., “Influenza virus infection, interferon response, viral counter-response, and apoptosis”, Viruses, 9:8 (2017), 223 | DOI

[18] Yin J., McCaskill J., “Replication of viruses in a growing plaque: a reaction-diffusion model”, Biophys. J., 61:6 (1992), 1540–1549 | DOI