Dual Radon—Kipriyanov transformation. Basic properties
Contemporary Mathematics. Fundamental Directions, Proceedings of the Voronezh Winter Mathematical Krein School — 2024, Tome 70 (2024) no. 4, pp. 643-653 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Radon–Kipriyanov transformation ($K_\gamma$) was introduced in 1998. In theoretical and applied studies, it is necessary to introduce its dual transformation, which is denoted by $K_\gamma^{\#}$ in the paper. Theorems on the boundedness of the $K_\gamma^{\#}$ transformation in the corresponding Schwartz subspace of the main functions are proved. A formula for representing the generalized convolution of $K_\gamma^{\#}$-transformations of functions belonging to the corresponding spaces of the main functions is obtained.
Keywords: Radon–Kipriyanov transformation, generalized convolution.
Mots-clés : Fourier transformation, Fourier–Bessel transformation
@article{CMFD_2024_70_4_a10,
     author = {L. N. Lyakhov and V. A. Kalitvin and M. G. Lapshina},
     title = {Dual {Radon{\textemdash}Kipriyanov} transformation. {Basic} properties},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {643--653},
     year = {2024},
     volume = {70},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a10/}
}
TY  - JOUR
AU  - L. N. Lyakhov
AU  - V. A. Kalitvin
AU  - M. G. Lapshina
TI  - Dual Radon—Kipriyanov transformation. Basic properties
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2024
SP  - 643
EP  - 653
VL  - 70
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a10/
LA  - ru
ID  - CMFD_2024_70_4_a10
ER  - 
%0 Journal Article
%A L. N. Lyakhov
%A V. A. Kalitvin
%A M. G. Lapshina
%T Dual Radon—Kipriyanov transformation. Basic properties
%J Contemporary Mathematics. Fundamental Directions
%D 2024
%P 643-653
%V 70
%N 4
%U http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a10/
%G ru
%F CMFD_2024_70_4_a10
L. N. Lyakhov; V. A. Kalitvin; M. G. Lapshina. Dual Radon—Kipriyanov transformation. Basic properties. Contemporary Mathematics. Fundamental Directions, Proceedings of the Voronezh Winter Mathematical Krein School — 2024, Tome 70 (2024) no. 4, pp. 643-653. http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a10/

[1] I. M. Gel'fand, I. M. Graev, and N. Ya. Vilenkin, Integral Geometry and Related Topics in Representation Theory, GIFML, M., 1952 (in Russian) | MR

[2] V. V. Katrakhov, A. A. Katrakhova, L. N. Lyakhov, A. B. Muravnik, S. M. Sitnik, and K. Ch. Khe, Singular Boundary-Value Problems, Nauchnaya Kniga, Voronezh, 2024 (in Russian)

[3] I. A. Kipriyanov, Singular Elliptic Boundary-Value Problems, Nauka, M., 1997 (in Russian) | MR

[4] I. A. Kipriyanov and L. N. Lyakhov, “On the Fourier, Fourier–Bessel and Radon transformations”, Rep. Acad. Sci. USSR, 360:2 (1998), 157–160 (in Russian) | MR | Zbl

[5] L. N. Lyakhov, “Kipriyanov—Radon transform”, Proc. Math. Inst. Russ. Acad. Sci., 248 (2005), 153–163 (in Russian) | MR | Zbl

[6] L. N. Lyakhov, B-hypersingular Integrals and Their Applications to the Description of the Kupriyanov Functional Classes and to Integral Equations with B-potential Kernels, LGPU, Lipetsk, 2007 (in Russian)

[7] L. N. Lyakhov, V. A. Kalitvin, and M. G. Lapshina, “On the transformation dual to the Radon–Kipriyanov transformation”, Totals Sci. Tech. Contemp. Math. Appl., 232, 2024, 70–77 (in Russian)

[8] L. N. Lyakhov and E. L. Sanina, “Differential and integral operations in hidden spherical symmetry and the dimension of the Koch curve”, Math. Notes, 113:4 (2023), 517–528 (in Russian) | DOI | Zbl

[9] B. M. Levitan, “Expansion into Fourier series and integrals with Bessel functions”, Progr. Math. Sci., 6:2 (1951), 102–143 (in Russian) | MR | Zbl

[10] F. Natterer, The Mathematics of Computerized Tomography, Russian translation, Mir, M., 1990 | MR