On nondegenerate orbits of $7$-dimensional Lie algebras containing a $3$-dimensional Abelian ideal
Contemporary Mathematics. Fundamental Directions, Proceedings of the Voronezh Winter Mathematical Krein School — 2024, Tome 70 (2024) no. 4, pp. 517-532 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper is related to the problem of describing homogeneous real hypersurfaces of multidimensional complex spaces as orbits of the action of Lie groups and algebras in these spaces. We study realizations in the form of algebras of holomorphic vector fields in $\mathbb{C}^4$ of $7$-dimensional Lie algebras containing only $3$-dimensional Abelian ideals and subalgebras. Among $594$ types of $7$-dimensional solvable indecomposable Lie algebras containing a $6$-dimensional nilradical, there are five types of such algebras. The article describes all their realizations that admit nondegenerate in the sense of Levi $7$-dimensional orbits. The presence of “simply homogeneous” orbits among the constructed hypersurfaces is shown.
Keywords: Lie algebra, holomorphic vector field, homogeneous manifold, real hypersurface, degeneration in the sense of Levi.
Mots-clés : Abelian subalgebra
@article{CMFD_2024_70_4_a0,
     author = {A. V. Atanov and A. V. Loboda},
     title = {On nondegenerate orbits of $7$-dimensional {Lie} algebras containing a $3$-dimensional {Abelian} ideal},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {517--532},
     year = {2024},
     volume = {70},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a0/}
}
TY  - JOUR
AU  - A. V. Atanov
AU  - A. V. Loboda
TI  - On nondegenerate orbits of $7$-dimensional Lie algebras containing a $3$-dimensional Abelian ideal
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2024
SP  - 517
EP  - 532
VL  - 70
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a0/
LA  - ru
ID  - CMFD_2024_70_4_a0
ER  - 
%0 Journal Article
%A A. V. Atanov
%A A. V. Loboda
%T On nondegenerate orbits of $7$-dimensional Lie algebras containing a $3$-dimensional Abelian ideal
%J Contemporary Mathematics. Fundamental Directions
%D 2024
%P 517-532
%V 70
%N 4
%U http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a0/
%G ru
%F CMFD_2024_70_4_a0
A. V. Atanov; A. V. Loboda. On nondegenerate orbits of $7$-dimensional Lie algebras containing a $3$-dimensional Abelian ideal. Contemporary Mathematics. Fundamental Directions, Proceedings of the Voronezh Winter Mathematical Krein School — 2024, Tome 70 (2024) no. 4, pp. 517-532. http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a0/

[1] A. V. Atanov, “Orbits of decomposable $7$-dimensional Lie algebras with $\mathfrak{sl}(2)$-subalgebra”, Ufa Math. J., 14:1 (2022), 3–22 (in Russian) | MR | Zbl

[2] V. K. Beloshapka, “On the dimension of the automorphism group of an analytic hypersurface”, Bull. Acad. Sci. USSR. Ser. Math., 43:2 (1979), 243–266 (in Russian) | MR | Zbl

[3] R. L. Bishop and R. J. Crittenden, Geometry of Manifolds, Russian translation, Mir, M., 1967

[4] V. V. Ezhov, “Linearization of the stability group of one class of hypersurfaces”, Progr. Math. Sci., 41:3 (1986), 181–182 (in Russian) | MR | Zbl

[5] V. V. Krutskikh, “On holomorphic realizations of 7-dimensional Lie algebras”, Bull. Voronezh State Univ. Ser. Phys. Math., 2023, no. 4, 115–128 (in Russian) | MR

[6] A. V. Loboda, “Homogeneous strictly pseudoconvex hypersurfaces in $\mathbb{C}^3$ with two-dimensional isotropy groups”, Math. Digest, 192:12 (2001), 3–24 (in Russian) | DOI | Zbl

[7] A. V. Loboda, “Affinely homogeneous real hypersurfaces of 3-dimensional complex space”, Bull. Voronezh State Univ. Ser. Phys. Math., 2009, no. 2, 71–91 (in Russian) | MR | Zbl

[8] A. V. Loboda, “Holomorphically homogeneous real hypersurfaces in $\mathbb{C}^3$”, Proc. Moscow Math. Soc., 81, no. 2, 2020, 205–280 (in Russian) | Zbl

[9] A. V. Loboda, “On the problem of describing holomorphically homogeneous real hypersurfaces of four-dimensional complex spaces”, Proc. Math. Inst. Russ. Acad. Sci., 311, 2020, 194–212 (in Russian) | DOI | Zbl

[10] A. V. Loboda, “On 7-dimensional Lie algebras admitting Levi-nondegenerate orbits in $\mathbb{C}^4$”, Proc. Moscow Math. Soc., 84, no. 2, 2023, 205–230 (in Russian)

[11] A. V. Loboda, R. S. Akopyan, and V. V. Krutskikh, “On 7-dimensional algebras of holomorphic vector fields in $\mathbb{C}^4$ having a 5-dimensional Abelian ideal”, Far East. Math. J., 23:1 (2023), 55–80 (in Russian) | MR | Zbl

[12] A. V. Loboda and A. V. Atanov, “Decomposable five-dimensional Lie algebras in the problem of holomorphic homogeneity in $\mathbb{C}^3$”, Totals Sci. Tech. Contemp. Math. Appl., 173, 2019, 86–115 (in Russian) | DOI

[13] A. V. Loboda and V. K. Kaverina, “On the degeneracy of orbits of nilpotent Lie algebras”, Ufa Math. J., 14:1 (2022), 57–83 (in Russian) | Zbl

[14] Atanov A. V., Loboda A. V., “On degenerate orbits of real Lie algebras in multidimensional complex spaces”, Russ. J. Math. Phys., 30 (2023), 432–442 | DOI | MR | Zbl

[15] Azad H., Huckleberry A., Richthofer W., “Homogeneous CR-manifolds”, J. Reine Angew. Math., 358 (1985), 125–154 | MR | Zbl

[16] Beloshapka V. K., Kossovskiy I. G., “Homogeneous hypersurfaces in $\mathbb{C}^3,$ associated with a model CR-cubic”, J. Geom. Anal., 20:3 (2010), 538–564 | DOI | MR | Zbl

[17] Cartan E., “Sur la geometrie pseudoconforme des hypersurfaces de deux variables complexes”, Ann. Mat. Pura Appl., 11:4 (1932), 17–90 | MR | Zbl

[18] Chern S. S., Moser J. K., “Real hypersurfaces in complex manifolds”, Acta Math., 133 (1974), 219–271 | DOI | MR

[19] Doubrov B., Merker J., The D., “Classification of simply-transitive Levi non-degenerate hypersurfaces in $\mathbb{C}^3$”, Int. Math. Res. Not. IMRN, 2022:19 (2022), 15421–15473 | DOI | MR | Zbl

[20] Fels G., Kaup W., “Classification of Levi degenerate homogeneous CR-manifolds in dimension 5”, Acta Math., 201 (2008), 1–82 | DOI | MR | Zbl

[21] Gong M. P., Classification of nilpotent Lie algebras of dimension 7 (over algebraically closed fields and $\mathbb{R}$), PhD Thesis, Univ. Waterloo, 1998 | MR

[22] Hindeleh F., Thompson G., “Seven dimensional Lie algebras with a four-dimensional nilradical”, Algebras Groups Geom., 25:3 (2008), 243–265 | MR | Zbl

[23] Kruglikov B., Santi A., On 3-nondegenerate CR manifolds in dimension 7 (I): the transitive case, 2023, arXiv: 2302.04513 | MR | Zbl

[24] Parry A. R., A classification of real indecomposable solvable Lie algebras of small dimension with codimension one nilradicals, Master's Thesis, Logan, 2007

[25] Sykes D., Homogeneous 2-nondegenerate CR manifolds of hypersurface type in low dimensions, 2022, arXiv: 2202.10123

[26] Vu A. L., Nguyen T. A., Nguyen T. T. C., Nguyen T. T. M., Vo T. N., “Classification of 7-dimensional solvable Lie algebras having 5-dimensional nilradicals”, Commun. Algebra, 51:5 (2023), 1866–1885 | DOI | MR | Zbl