Mots-clés : Abelian subalgebra
@article{CMFD_2024_70_4_a0,
author = {A. V. Atanov and A. V. Loboda},
title = {On nondegenerate orbits of $7$-dimensional {Lie} algebras containing a $3$-dimensional {Abelian} ideal},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {517--532},
year = {2024},
volume = {70},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a0/}
}
TY - JOUR AU - A. V. Atanov AU - A. V. Loboda TI - On nondegenerate orbits of $7$-dimensional Lie algebras containing a $3$-dimensional Abelian ideal JO - Contemporary Mathematics. Fundamental Directions PY - 2024 SP - 517 EP - 532 VL - 70 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a0/ LA - ru ID - CMFD_2024_70_4_a0 ER -
%0 Journal Article %A A. V. Atanov %A A. V. Loboda %T On nondegenerate orbits of $7$-dimensional Lie algebras containing a $3$-dimensional Abelian ideal %J Contemporary Mathematics. Fundamental Directions %D 2024 %P 517-532 %V 70 %N 4 %U http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a0/ %G ru %F CMFD_2024_70_4_a0
A. V. Atanov; A. V. Loboda. On nondegenerate orbits of $7$-dimensional Lie algebras containing a $3$-dimensional Abelian ideal. Contemporary Mathematics. Fundamental Directions, Proceedings of the Voronezh Winter Mathematical Krein School — 2024, Tome 70 (2024) no. 4, pp. 517-532. http://geodesic.mathdoc.fr/item/CMFD_2024_70_4_a0/
[1] A. V. Atanov, “Orbits of decomposable $7$-dimensional Lie algebras with $\mathfrak{sl}(2)$-subalgebra”, Ufa Math. J., 14:1 (2022), 3–22 (in Russian) | MR | Zbl
[2] V. K. Beloshapka, “On the dimension of the automorphism group of an analytic hypersurface”, Bull. Acad. Sci. USSR. Ser. Math., 43:2 (1979), 243–266 (in Russian) | MR | Zbl
[3] R. L. Bishop and R. J. Crittenden, Geometry of Manifolds, Russian translation, Mir, M., 1967
[4] V. V. Ezhov, “Linearization of the stability group of one class of hypersurfaces”, Progr. Math. Sci., 41:3 (1986), 181–182 (in Russian) | MR | Zbl
[5] V. V. Krutskikh, “On holomorphic realizations of 7-dimensional Lie algebras”, Bull. Voronezh State Univ. Ser. Phys. Math., 2023, no. 4, 115–128 (in Russian) | MR
[6] A. V. Loboda, “Homogeneous strictly pseudoconvex hypersurfaces in $\mathbb{C}^3$ with two-dimensional isotropy groups”, Math. Digest, 192:12 (2001), 3–24 (in Russian) | DOI | Zbl
[7] A. V. Loboda, “Affinely homogeneous real hypersurfaces of 3-dimensional complex space”, Bull. Voronezh State Univ. Ser. Phys. Math., 2009, no. 2, 71–91 (in Russian) | MR | Zbl
[8] A. V. Loboda, “Holomorphically homogeneous real hypersurfaces in $\mathbb{C}^3$”, Proc. Moscow Math. Soc., 81, no. 2, 2020, 205–280 (in Russian) | Zbl
[9] A. V. Loboda, “On the problem of describing holomorphically homogeneous real hypersurfaces of four-dimensional complex spaces”, Proc. Math. Inst. Russ. Acad. Sci., 311, 2020, 194–212 (in Russian) | DOI | Zbl
[10] A. V. Loboda, “On 7-dimensional Lie algebras admitting Levi-nondegenerate orbits in $\mathbb{C}^4$”, Proc. Moscow Math. Soc., 84, no. 2, 2023, 205–230 (in Russian)
[11] A. V. Loboda, R. S. Akopyan, and V. V. Krutskikh, “On 7-dimensional algebras of holomorphic vector fields in $\mathbb{C}^4$ having a 5-dimensional Abelian ideal”, Far East. Math. J., 23:1 (2023), 55–80 (in Russian) | MR | Zbl
[12] A. V. Loboda and A. V. Atanov, “Decomposable five-dimensional Lie algebras in the problem of holomorphic homogeneity in $\mathbb{C}^3$”, Totals Sci. Tech. Contemp. Math. Appl., 173, 2019, 86–115 (in Russian) | DOI
[13] A. V. Loboda and V. K. Kaverina, “On the degeneracy of orbits of nilpotent Lie algebras”, Ufa Math. J., 14:1 (2022), 57–83 (in Russian) | Zbl
[14] Atanov A. V., Loboda A. V., “On degenerate orbits of real Lie algebras in multidimensional complex spaces”, Russ. J. Math. Phys., 30 (2023), 432–442 | DOI | MR | Zbl
[15] Azad H., Huckleberry A., Richthofer W., “Homogeneous CR-manifolds”, J. Reine Angew. Math., 358 (1985), 125–154 | MR | Zbl
[16] Beloshapka V. K., Kossovskiy I. G., “Homogeneous hypersurfaces in $\mathbb{C}^3,$ associated with a model CR-cubic”, J. Geom. Anal., 20:3 (2010), 538–564 | DOI | MR | Zbl
[17] Cartan E., “Sur la geometrie pseudoconforme des hypersurfaces de deux variables complexes”, Ann. Mat. Pura Appl., 11:4 (1932), 17–90 | MR | Zbl
[18] Chern S. S., Moser J. K., “Real hypersurfaces in complex manifolds”, Acta Math., 133 (1974), 219–271 | DOI | MR
[19] Doubrov B., Merker J., The D., “Classification of simply-transitive Levi non-degenerate hypersurfaces in $\mathbb{C}^3$”, Int. Math. Res. Not. IMRN, 2022:19 (2022), 15421–15473 | DOI | MR | Zbl
[20] Fels G., Kaup W., “Classification of Levi degenerate homogeneous CR-manifolds in dimension 5”, Acta Math., 201 (2008), 1–82 | DOI | MR | Zbl
[21] Gong M. P., Classification of nilpotent Lie algebras of dimension 7 (over algebraically closed fields and $\mathbb{R}$), PhD Thesis, Univ. Waterloo, 1998 | MR
[22] Hindeleh F., Thompson G., “Seven dimensional Lie algebras with a four-dimensional nilradical”, Algebras Groups Geom., 25:3 (2008), 243–265 | MR | Zbl
[23] Kruglikov B., Santi A., On 3-nondegenerate CR manifolds in dimension 7 (I): the transitive case, 2023, arXiv: 2302.04513 | MR | Zbl
[24] Parry A. R., A classification of real indecomposable solvable Lie algebras of small dimension with codimension one nilradicals, Master's Thesis, Logan, 2007
[25] Sykes D., Homogeneous 2-nondegenerate CR manifolds of hypersurface type in low dimensions, 2022, arXiv: 2202.10123
[26] Vu A. L., Nguyen T. A., Nguyen T. T. C., Nguyen T. T. M., Vo T. N., “Classification of 7-dimensional solvable Lie algebras having 5-dimensional nilradicals”, Commun. Algebra, 51:5 (2023), 1866–1885 | DOI | MR | Zbl