Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2024_70_3_a7, author = {E. Yu. Panov}, title = {Self-similar solutions of a multi-phase {Stefan} problem on the half-line}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {441--450}, publisher = {mathdoc}, volume = {70}, number = {3}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a7/} }
TY - JOUR AU - E. Yu. Panov TI - Self-similar solutions of a multi-phase Stefan problem on the half-line JO - Contemporary Mathematics. Fundamental Directions PY - 2024 SP - 441 EP - 450 VL - 70 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a7/ LA - ru ID - CMFD_2024_70_3_a7 ER -
E. Yu. Panov. Self-similar solutions of a multi-phase Stefan problem on the half-line. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 70 (2024) no. 3, pp. 441-450. http://geodesic.mathdoc.fr/item/CMFD_2024_70_3_a7/
[1] S. L. Kamenomostskaya, “On the Stefan problem”, Math. Digest, 53:4 (1961), 489–514 (in Russian)
[2] O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, M., 1962 (in Russian)
[3] E. Yu. Panov, “On the structure of weak solutions of the Riemann problem for a degenerate nonlinear diffusion equation”, Contemp. Math. Fundam. Directions, 69, no. 4, 2023, 676–684 (in Russian)
[4] Carslaw H. S., Jaeger J. C., Conduction of heat in solids, Oxford University Press, Oxford, 1959
[5] Panov E. Yu., “Solutions of an ill-posed Stefan problem”, J. Math. Sci. (N. Y.), 274:4 (2023), 534–543
[6] Panov E. Yu., On self-similar solutions of a multi-phase Stefan problem in the half-line, 2024, arXiv: 2404.03672v2 [Math.AP]