Existence of a renormalized solution to a nonlinear elliptic equation with $L_1$-data in the space $\mathbb{R}^n$
Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 2, pp. 278-299

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a second-order quasilinear elliptic equation with an integrable right-hand side in the space $\mathbb{R}^n.$ Restrictions on the structure of the equation are formulated in terms of a generalized $N$-function. In the nonreflexive Muzilak–Orlicz–Sobolev spaces, the existence of a renormalized solution in the space $\mathbb{R}^n$ is proved.
Keywords: quasilinear equation, generalized $N$-function, Muzilak–Orlicz–Sobolev space, renormalized solution.
Mots-clés : elliptic equation
@article{CMFD_2024_70_2_a5,
     author = {L. M. Kozhevnikova},
     title = {Existence of a renormalized solution to a nonlinear elliptic equation with $L_1$-data in the space $\mathbb{R}^n$},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {278--299},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_2_a5/}
}
TY  - JOUR
AU  - L. M. Kozhevnikova
TI  - Existence of a renormalized solution to a nonlinear elliptic equation with $L_1$-data in the space $\mathbb{R}^n$
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2024
SP  - 278
EP  - 299
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2024_70_2_a5/
LA  - ru
ID  - CMFD_2024_70_2_a5
ER  - 
%0 Journal Article
%A L. M. Kozhevnikova
%T Existence of a renormalized solution to a nonlinear elliptic equation with $L_1$-data in the space $\mathbb{R}^n$
%J Contemporary Mathematics. Fundamental Directions
%D 2024
%P 278-299
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2024_70_2_a5/
%G ru
%F CMFD_2024_70_2_a5
L. M. Kozhevnikova. Existence of a renormalized solution to a nonlinear elliptic equation with $L_1$-data in the space $\mathbb{R}^n$. Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 2, pp. 278-299. http://geodesic.mathdoc.fr/item/CMFD_2024_70_2_a5/