Existence of a renormalized solution to a nonlinear elliptic equation with $L_1$-data in the space $\mathbb{R}^n$
Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 2, pp. 278-299.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a second-order quasilinear elliptic equation with an integrable right-hand side in the space $\mathbb{R}^n.$ Restrictions on the structure of the equation are formulated in terms of a generalized $N$-function. In the nonreflexive Muzilak–Orlicz–Sobolev spaces, the existence of a renormalized solution in the space $\mathbb{R}^n$ is proved.
Keywords: quasilinear equation, generalized $N$-function, Muzilak–Orlicz–Sobolev space, renormalized solution.
Mots-clés : elliptic equation
@article{CMFD_2024_70_2_a5,
     author = {L. M. Kozhevnikova},
     title = {Existence of a renormalized solution to a nonlinear elliptic equation with $L_1$-data in the space $\mathbb{R}^n$},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {278--299},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_2_a5/}
}
TY  - JOUR
AU  - L. M. Kozhevnikova
TI  - Existence of a renormalized solution to a nonlinear elliptic equation with $L_1$-data in the space $\mathbb{R}^n$
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2024
SP  - 278
EP  - 299
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2024_70_2_a5/
LA  - ru
ID  - CMFD_2024_70_2_a5
ER  - 
%0 Journal Article
%A L. M. Kozhevnikova
%T Existence of a renormalized solution to a nonlinear elliptic equation with $L_1$-data in the space $\mathbb{R}^n$
%J Contemporary Mathematics. Fundamental Directions
%D 2024
%P 278-299
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2024_70_2_a5/
%G ru
%F CMFD_2024_70_2_a5
L. M. Kozhevnikova. Existence of a renormalized solution to a nonlinear elliptic equation with $L_1$-data in the space $\mathbb{R}^n$. Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 2, pp. 278-299. http://geodesic.mathdoc.fr/item/CMFD_2024_70_2_a5/

[1] Vildanova V. F., Mukminov F. Kh., “Entropiinoe reshenie dlya uravneniya s meroznachnym potentsialom v giperbolicheskom prostranstve”, Mat. sb., 214:11 (2023), 37–62 | DOI | MR

[2] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, IL, M., 1962

[3] Kozhevnikova L. M., “Suschestvovanie entropiinogo resheniya nelineinoi ellipticheskoi zadachi v neogranichennoi oblasti”, Teor. mat. fiz., 218:1 (2024), 124–148 | DOI | MR | Zbl

[4] Kozhevnikova L. M., “Entropiinye i renormalizovannye resheniya anizotropnykh ellipticheskikh uravnenii s peremennymi pokazatelyami nelineinostei”, Mat. sb., 210:3 (2019), 131–161 | DOI | MR | Zbl

[5] Kozhevnikova L. M., Kashnikova A. P., “Suschestvovanie reshenii nelineinykh ellipticheskikh uravnenii s dannymi v vide mery v prostranstvakh Muzilaka—Orlicha”, Mat. sb., 213:4 (2022), 38–73 | DOI | MR | Zbl

[6] Ahmdatt T., Elemine Vall M. S. B., Benkirane A., Touzani A., “Existence of renormalized solutions for a nonlinear elliptic equation in Musielak framework and $L^1$”, An. Univ. Craiova Ser. Mat. Inform., 44:2 (2017), 190–213 | MR

[7] Ahmida Y., Chlebicka I., Gwiazda P., Youssfi A., “Gossez's approximation theorems in Musielak—Orlicz—Sobolev spaces”, J. Funct. Anal., 275:9 (2018), 2538–2571 | DOI | MR | Zbl

[8] Ait Khellou M., Benkirane A., “Renormalized solution for nonlinear elliptic problems with lower order terms and $L^1$ data in Musielak—Orlicz spaces”, An. Univ. Craiova Ser. Mat. Inform., 43:2 (2016), 164–187 | MR | Zbl

[9] Ait Khelloul M., Douiri S. M., El Hadfi Y., “Existence of solutions for some nonlinear elliptic equations in Musielak spaces with only the log-Hölder continuity condition”, Mediterr. J. Math., 17:1 (2020), 1–18 | DOI | MR | Zbl

[10] Benkirane A., Sidi El Vally M., “An existence result for nonlinear elliptic equations in Musielak—Orlicz—Sobolev spaces”, Bull. Belg. Math. Soc. Simon Stevin, 20 (2013), 57–75 | DOI | MR | Zbl

[11] Benkirane A., Sidi El Vally M., “Variational inequalities in Musielak—Orlicz—Sobolev spaces”, Bull. Belg. Math. Soc. Simon Stevin, 21:5 (2014), 787–811 | DOI | MR | Zbl

[12] Chlebicka I., “Measure data elliptic problems with generalized Orlicz growth”, Proc. Roy. Soc. Edinburgh Sect. A, 153:2 (2023), 588–618 | DOI | MR | Zbl

[13] Douiri S. M., Benkirane A., Ait Khellou M., El Hadfi Y., “Nonlinear unilateral problems without sign condition in Musielak spaces”, Anal. Math. Phys., 11:2 (2021), 66 | DOI | MR | Zbl

[14] Elarabi R., Rhoudaf M., Sabiki H., “Entropy solution for a nonlinear elliptic problem with lower order term in Musielak—Orlicz spaces”, Ric. Mat., 67:2 (2018), 549–579 | DOI | MR | Zbl

[15] Elemine Vall M. S. B., Ahmedatt T., Touzani A., Benkirane A., “Existence of entropy solutions for nonlinear elliptic equations in Musielak framework with $L^1$ data”, Bol. Soc. Parana. Mat., 36:1 (2018), 125–150 | DOI | MR | Zbl

[16] Gwiazda P., Skrzypczaka I., Zatorska-Goldstein A., “Existence of renormalized solutions to elliptic equation in Musielak—Orlicz space”, Differ. Equ, 264 (2018), 341–377 | DOI | MR | Zbl

[17] Kozhevnikova L. M., “On solutions of anisotropic elliptic equations with variable exponent and measure data”, Complex Var. Elliptic Equ, 65:3 (2020), 337–367 | DOI | MR

[18] Kozhevnikova L. M., “On solutions of elliptic equations with variable exponents and measure data in $\mathbb{R}^n$”, Differential Equations on Manifolds and Mathematical Physics, Birkhäuser, Cham, 2021, 221–239 | DOI | MR | Zbl

[19] Kozhevnikova L. M., “On solutions of nonlinear elliptic equations with $L_1$-data in unbounded domains”, Lobachevskii J. Math., 44:5 (2023), 1879–1901 | DOI | MR | Zbl

[20] Li Y., Fengping Y., Shulin Zh., “Entropy and renormalized solutions to the general nonlinear elliptic equations in Musielak—Orlicz spaces”, Nonlinear Anal. Real World Appl., 61:2 (2021), 1–20 | MR

[21] Musielak J., Orlicz spaces and modular spaces, Springer, Berlin, 1983 | MR | Zbl

[22] Talha A., Benkirane A., “Strongly nonlinear elliptic boundary value problems in Musielak—Orlicz spaces”, Monatsh. Math., 186:4 (2018), 745–776 | DOI | MR | Zbl