The third mixed boundary-value problem for strongly elliptic differential-difference equations in a bounded domain
Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 2, pp. 201-214.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider strongly elliptic differential-difference equations with mixed boundary conditions in a bounded domain. There are homogeneous Dirichlet conditions on a part of the boundary, and boundary conditions of the third kind on the other part of the boundary. We establish the connection between these problems and nonlocal mixed problems for strongly elliptic differential equations. We prove the uniqueness and the smoothness of their solutions.
Keywords: differential-difference equation, mixed boundary conditions, Dirichlet boundary conditions, boundary conditions of the third kind.
Mots-clés : elliptic equation
@article{CMFD_2024_70_2_a1,
     author = {V. V. Akhlynina},
     title = {The third mixed boundary-value problem for strongly elliptic differential-difference equations in a bounded domain},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {201--214},
     publisher = {mathdoc},
     volume = {70},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_2_a1/}
}
TY  - JOUR
AU  - V. V. Akhlynina
TI  - The third mixed boundary-value problem for strongly elliptic differential-difference equations in a bounded domain
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2024
SP  - 201
EP  - 214
VL  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2024_70_2_a1/
LA  - ru
ID  - CMFD_2024_70_2_a1
ER  - 
%0 Journal Article
%A V. V. Akhlynina
%T The third mixed boundary-value problem for strongly elliptic differential-difference equations in a bounded domain
%J Contemporary Mathematics. Fundamental Directions
%D 2024
%P 201-214
%V 70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2024_70_2_a1/
%G ru
%F CMFD_2024_70_2_a1
V. V. Akhlynina. The third mixed boundary-value problem for strongly elliptic differential-difference equations in a bounded domain. Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 2, pp. 201-214. http://geodesic.mathdoc.fr/item/CMFD_2024_70_2_a1/

[1] Antonevich A. B., “Ob indekse i normalnoi razreshimosti obschei ellipticheskoi kraevoi zadachi s konechnoi gruppoi sdvigov na granitse”, Diff. uravn., 8:2 (1972), 309–317 | Zbl

[2] Bitsadze A. V., Samarskii A. A., “O nekotorykh prosteishikh obobscheniyakh lineinykh ellipticheskikh kraevykh zadach”, Dokl. AN SSSR, 185:4 (1969), 739–740 | Zbl

[3] Kamenskii G. A., Skubachevskii A. L., Lineinye kraevye zadachi dlya differentsialno-raznostnykh uravnenii, MAI, M., 1992

[4] Rabinovich V. S., “O razreshimosti differentsialno-raznostnykh uravnenii na $\mathbb{R}^n$ i v poluprostranstve”, Dokl. AN SSSR, 243:5 (1978), 1134–1137 | MR | Zbl

[5] Rossovskii L. E., “Ellipticheskie funktsionalno-differentsialnye uravneniya so szhatiem i rastyazheniem argumentov neizvestnoi funktsii”, Sovrem. mat. Fundam. napravl., 54, 2014, 3–138

[6] Skubachevskii A. L., “O spektre nekotorykh nelokalnykh ellipticheskikh kraevykh zadach”, Mat. sb., 117:4 (1982), 548–558 | MR | Zbl

[7] Skubachevskii A. L., “Kraevye zadachi dlya ellipticheskikh funktsionalno-differentsialnykh uravnenii i ikh prilozheniya”, Usp. mat. nauk, 71:5 (2016), 3–112 | DOI | MR | Zbl

[8] Browder F., “Non-local elliptic boundary value problems”, Am. J. Math., 86:4 (1964), 735–750 | DOI | MR | Zbl

[9] Carleman T., “Sur la théorie des équations intégrales et ses applications”, Verhandlungen des Internat. Math. Kongr. Zürich, 1 (1932), 138–151 | Zbl

[10] Hartman F., Stampacchia G., “On some non-linear elliptic differential-functional equations”, Acta Math., 115 (1966), 271–230 | DOI | MR

[11] Kato T., “Fractional powers of dissipative operators”, J. Math. Soc. Jpn, 13:3 (1961), 246–274 | DOI | MR | Zbl

[12] Liiko V. V., “Strongly elliptic differential-difference equations with mixed boundary conditions in a bounded domain”, Complex Var. Elliptic Equ, 68:12 (2023), 2034–2058 | DOI | MR | Zbl

[13] Onanov G. G., Skubachevskii A. L., “Nonlocal problems in the mechanics of three-layer shells”, Math. Model. Nat. Phenom., 12:6 (2017), 192–207 | DOI | MR | Zbl

[14] Onanov G. G., Tsvetkov E. L., “On the mininum of the energy functional with respect to functions with deviating argument in a stationary problem of elasticity theory”, Russ. J. Math. Phys., 3:4 (1995), 491–500 | MR | Zbl

[15] Skubachevskii A. L., Elliptic Functional Differential Equations and Applications, Birkhäuser, Basel—Boston—Berlin, 1997 | MR | Zbl

[16] Skubachevskii A. L., “Elliptic differential-difference operators with degeneration and the Kato square root problem”, Math. Nachr., 291 (2018), 2660–2692 | DOI | MR | Zbl