On subordination conditions for systems of minimal differential operators
Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 1, pp. 121-149
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we provide a review of results on a priori estimates for systems of minimal differential operators in the scale of spaces $L^p(\Omega),$ where $p\in[1,\infty].$ We present results on the characterization of elliptic and $l$-quasielliptic systems using a priori estimates in isotropic and anisotropic Sobolev spaces $W_{p,0}^l(\mathbb R^n),$ $p\in[1,\infty].$ For a given set $l=(l_1,\dots,l_n)\in\mathbb N^n$ we prove criteria for the existence of $l$-quasielliptic and weakly coercive systems and indicate wide classes of weakly coercive in $W_{p,0}^l(\mathbb R^n),$ $p\in[1,\infty],$ nonelliptic, and nonquasielliptic systems. In addition, we describe linear spaces of operators that are subordinate in the $L^\infty(\mathbb R^n)$-norm to the tensor product of two elliptic differential polynomials.
Keywords:
differential operator, a priori estimate, quasi-ellipticity, coercivity.
@article{CMFD_2024_70_1_a7,
author = {D. V. Limanskyii and M. M. Malamud},
title = {On subordination conditions for systems of minimal differential operators},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {121--149},
publisher = {mathdoc},
volume = {70},
number = {1},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a7/}
}
TY - JOUR AU - D. V. Limanskyii AU - M. M. Malamud TI - On subordination conditions for systems of minimal differential operators JO - Contemporary Mathematics. Fundamental Directions PY - 2024 SP - 121 EP - 149 VL - 70 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a7/ LA - ru ID - CMFD_2024_70_1_a7 ER -
%0 Journal Article %A D. V. Limanskyii %A M. M. Malamud %T On subordination conditions for systems of minimal differential operators %J Contemporary Mathematics. Fundamental Directions %D 2024 %P 121-149 %V 70 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a7/ %G ru %F CMFD_2024_70_1_a7
D. V. Limanskyii; M. M. Malamud. On subordination conditions for systems of minimal differential operators. Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 1, pp. 121-149. http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a7/