On subordination conditions for systems of minimal differential operators
Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 1, pp. 121-149

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we provide a review of results on a priori estimates for systems of minimal differential operators in the scale of spaces $L^p(\Omega),$ where $p\in[1,\infty].$ We present results on the characterization of elliptic and $l$-quasielliptic systems using a priori estimates in isotropic and anisotropic Sobolev spaces $W_{p,0}^l(\mathbb R^n),$ $p\in[1,\infty].$ For a given set $l=(l_1,\dots,l_n)\in\mathbb N^n$ we prove criteria for the existence of $l$-quasielliptic and weakly coercive systems and indicate wide classes of weakly coercive in $W_{p,0}^l(\mathbb R^n),$ $p\in[1,\infty],$ nonelliptic, and nonquasielliptic systems. In addition, we describe linear spaces of operators that are subordinate in the $L^\infty(\mathbb R^n)$-norm to the tensor product of two elliptic differential polynomials.
Keywords: differential operator, a priori estimate, quasi-ellipticity, coercivity.
@article{CMFD_2024_70_1_a7,
     author = {D. V. Limanskyii and M. M. Malamud},
     title = {On subordination conditions for systems of minimal differential operators},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {121--149},
     publisher = {mathdoc},
     volume = {70},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a7/}
}
TY  - JOUR
AU  - D. V. Limanskyii
AU  - M. M. Malamud
TI  - On subordination conditions for systems of minimal differential operators
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2024
SP  - 121
EP  - 149
VL  - 70
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a7/
LA  - ru
ID  - CMFD_2024_70_1_a7
ER  - 
%0 Journal Article
%A D. V. Limanskyii
%A M. M. Malamud
%T On subordination conditions for systems of minimal differential operators
%J Contemporary Mathematics. Fundamental Directions
%D 2024
%P 121-149
%V 70
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a7/
%G ru
%F CMFD_2024_70_1_a7
D. V. Limanskyii; M. M. Malamud. On subordination conditions for systems of minimal differential operators. Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 1, pp. 121-149. http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a7/