Averaging method for problems on quasiclassical asymptotics
Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 1, pp. 53-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

The averaging method is developed for operators with rapidly oscillating coefficients, intended for use in problems of quasiclassical asymptotics and not assuming a periodic structure of coefficient oscillations. Algebras of locally averaged functions are studied, an averaging theorem for differential operators of general form is proved, and some features of the method are illustrated using the example of the wave equation.
Keywords: averaging methods, rapidly oscillating coefficients, quasiclassical asymptotics, algebras of locally averaged functions.
@article{CMFD_2024_70_1_a4,
     author = {S. Yu. Dobrokhotov and V. E. Nazaikinskii},
     title = {Averaging method for problems on quasiclassical asymptotics},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {53--76},
     publisher = {mathdoc},
     volume = {70},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a4/}
}
TY  - JOUR
AU  - S. Yu. Dobrokhotov
AU  - V. E. Nazaikinskii
TI  - Averaging method for problems on quasiclassical asymptotics
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2024
SP  - 53
EP  - 76
VL  - 70
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a4/
LA  - ru
ID  - CMFD_2024_70_1_a4
ER  - 
%0 Journal Article
%A S. Yu. Dobrokhotov
%A V. E. Nazaikinskii
%T Averaging method for problems on quasiclassical asymptotics
%J Contemporary Mathematics. Fundamental Directions
%D 2024
%P 53-76
%V 70
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a4/
%G ru
%F CMFD_2024_70_1_a4
S. Yu. Dobrokhotov; V. E. Nazaikinskii. Averaging method for problems on quasiclassical asymptotics. Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 1, pp. 53-76. http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a4/

[1] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984

[2] Berlyand L. V., Dobrokhotov S. Yu., “Operatornoe razdelenie peremennykh v zadachakh o korotkovolnovoi asimptotike dlya differentsialnykh uravnenii s bystroostsilliruyuschimi koeffitsientami”, Dokl. AN SSSR, 296:1 (1987), 80–84 | MR | Zbl

[3] Borisov D. I., “Ob usrednenii operatorov s vozmuscheniyami obschego vida v mladshikh chlenakh”, Mat. zametki, 113:1 (2023), 132–137 | DOI | MR | Zbl

[4] Bryuning I., Grushin V. V., Dobrokhotov S. Yu., “Osrednenie lineinykh operatorov, adiabaticheskoe priblizhenie i psevdodifferentsialnye operatory”, Mat. zametki, 92:2 (2012), 163–180 | DOI | MR

[5] Buslaev V. S., “Kvaziklassicheskoe priblizhenie dlya uravnenii s periodicheskimi koeffitsientami”, Usp. mat. nauk, 42:6 (1987), 77–98 | MR | Zbl

[6] Groshev A. V., “Teorema o sisteme lineinykh form”, Dokl. AN SSSR, 1938, no. 19, 151–152 | Zbl

[7] Dobrokhotov S. Yu., “Rezonansy v asimptotike resheniya zadachi Koshi dlya uravneniya Shredingera s bystroostsilliruyuschim konechno-zonnym potentsialom”, Mat. zametki, 44:3 (1988), 319–340 | MR | Zbl

[8] Dobrokhotov S. Yu., Nazaikinskii V. E., “Asimptotiki volnovykh i vikhrevykh lokalizovannykh reshenii linearizovannykh uravnenii melkoi vody”, Aktualnye problemy mekhaniki, Nauka, M., 2015, 98–139

[9] Dobrokhotov S. Yu., Nazaikinskii V. E., Tirotstsi B., “O metode osredneniya dlya differentsialnykh operatorov s ostsilliruyuschimi koeffitsientami”, Dokl. RAN, 461:5 (2015), 516–520 | DOI | Zbl

[10] Dobrokhotov S. Yu., Nazaikinskii V. E., Shafarevich A. I., “Novye integralnye predstavleniya kanonicheskogo operatora Maslova v osobykh kartakh”, Izv. RAN. Ser. mat., 81:2 (2017), 53–96 | DOI | MR | Zbl

[11] Dobrokhotov S. Yu., Nazaikinskii V. E., Shafarevich A. I., “Effektivnye asimptotiki reshenii zadachi Koshi s lokalizovannymi nachalnymi dannymi dlya lineinykh sistem differentsialnykh i psevdodifferentsialnykh uravnenii”, Usp. mat. nauk, 76:5 (2021), 3–80 | MR | Zbl

[12] Dorodnyi M. A., Suslina T. A., “Usrednenie giperbolicheskikh uravnenii”, Funkts. analiz i ego prilozh., 50:4 (2016), 91–96 | DOI | MR | Zbl

[13] Dorodnyi M. A., Suslina T. A., “Usrednenie giperbolicheskikh uravnenii: operatornye otsenki pri uchete korrektorov”, Funkts. analiz i ego prilozh., 57:4 (2023), 123–129 | DOI | MR

[14] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993

[15] Zhikov V. V., Kozlov S. M., Oleinik O. A., Ngoan Kha Ten, “Usrednenie i $G$-skhodimost differentsialnykh operatorov”, Usp. mat. nauk, 34:5 (1979), 65–133 | MR | Zbl

[16] Zhikov V. V., Pastukhova S. E., “Ob operatornykh otsenkakh v teorii usredneniya”, Usp. mat. nauk, 71:3 (2016), 27–122 | DOI | MR | Zbl

[17] Zhikov V. V., Pastukhova S. E., “O skhodimosti blokhovskikh sobstvennykh funktsii v zadachakh usredneniya”, Funkts. analiz i ego prilozh., 50:3 (2016), 47–65 | DOI | MR | Zbl

[18] Zhikov V. V., Pyatnitskii A. L., “Usrednenie sluchainykh singulyarnykh struktur i sluchainykh mer”, Izv. RAN. Ser. mat., 70:1 (2006), 23–74 | DOI | MR | Zbl

[19] Karaeva D. A., Karaev A. D., Nazaikinskii V. E., “Metod osredneniya v zadache o rasprostranenii dlinnykh voln ot lokalizovannogo istochnika v basseine nad nerovnym dnom”, Diff. uravn., 54:8 (2018), 1075–1089 | DOI | MR | Zbl

[20] Kozlov S. M., “Osrednenie differentsialnykh operatorov s pochti-periodicheskimi bystroostsilliruyuschimi koeffitsientami”, Mat. sb., 107:2 (1978), 199–217 | MR

[21] Kozlov S. M., “Osrednenie sluchainykh operatorov”, Mat. sb., 109:2 (1979), 188–202 | MR | Zbl

[22] Kuzmak G. E., “Asimptoticheskie resheniya nelineinykh differentsialnykh uravnenii s peremennymi koeffitsientami”, Prikl. mat. i mekh., 23:3 (1951), 519–526

[23] Maslov V. P., Teoriya vozmuschenii i asimptoticheskie metody, MGU, M., 1965

[24] Maslov V. P., Operatornye metody, Mir, M., 1976 | MR

[25] Nazaikinskii V. E., Sternin B. Yu., Shatalov V. E., Metody nekommutativnogo analiza, Tekhnosfera, M., 2002

[26] Nazarov S. A., Pyatnitskii A. L., “Osrednenie spektralnoi zadachi Dirikhle dlya sistemy differentsialnykh uravnenii s bystroostsilliruyuschimi koeffitsientami pri plotnosti peremennogo znaka”, Probl. mat. analiza, 47 (2010), 75–107

[27] Pastukhova S. E., “Ob operatornykh otsenkakh usredneniya dlya ellipticheskikh sistem vysokogo poryadka”, Mat. zametki, 114:3 (2023), 370–389 | DOI | MR | Zbl

[28] Suslina T. A., “Teoretiko-operatornyi podkhod k usredneniyu uravnenii tipa Shredingera s periodicheskimi koeffitsientami”, Usp. mat. nauk, 78:6 (2023), 47–178 | DOI | MR

[29] Alicandro R., Ansini N., Braides A., Piatnitski A., Tribuzio A., “Periodic homogenization”, A Variational Theory of Convolution-Type Functionals, Springer, Singapore, 2023, 59–89 | DOI | MR

[30] Belov V. V., Dobrokhotov S. Yu., Tudorovskiy T. Ya., “Operator separation of variables for adiabatic problems in quantum and wave mechanics”, J. Eng. Math., 55:1–4 (2006), 183–237 | DOI | MR | Zbl

[31] Bensoussan A., Lions J.-L., Papanicolaou G., Asymptotic Analysis of Periodic Structures, North-Holland, Amsterdam, 1978 | MR

[32] Borisov D. I., “Homogenization for operators with arbitrary perturbations of coefficients”, J. Differ. Equ., 369 (2023), 41–93 | DOI | MR | Zbl

[33] Brüning J., Dobrokhotov S. Yu., Grushin V. V., “Approximate formulas for the eigenvalues of a Laplace operator on a torus, which arises in linear problems with oscillating coefficients”, Russ. J. Math. Phys., 19:3 (2012), 1–10 | DOI | MR

[34] Calvo-Jurado C., Casado-Díaz J., Luna-Laynez M., “Homogenization of the Poisson equation with Dirichlet conditions in random perforated domains”, J. Comput. Appl. Math., 275 (2015), 375–381 | DOI | MR | Zbl

[35] Cancedda A., Chiado Piat V., Nazarov S.A., Taskinen J., “Spectral gaps for the linear water-wave problem in a channel with thin structures”, Math. Nachr., 295 (2022), 657–682 | DOI | MR | Zbl

[36] Chung E., Efendiev Ya., Hou Th. Y., Multiscale Model Reduction. Multiscale Finite Element Methods and Their Generalizations, Springer, Cham, 2023 | MR

[37] Dobrokhotov S. Yu., Nazaikinskii V. E., “Homogenization of the Cauchy problem for the wave equation with rapidly varying coefficients and initial conditions”, Differential Equations on Manifolds and Mathematical Physics, Birkhäuser, Cham, 2022, 77–102 | MR

[38] Feynman R. P., “An operator calculus having applications in quantum electrodynamics”, Phys. Rev., 84:2 (1951), 108–128 | DOI | MR | Zbl

[39] Heida M., Neukamm S., Varga M., “Stochastic two-scale convergence and Young measures”, Netw. Heterog. Media, 17:2 (2022), 227–254 | DOI | MR | Zbl

[40] Khintchine A. J., “Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen”, Math. Ann., 92 (1924), 115–125 | DOI | MR

[41] Marchenko V. A., Khruslov E. Ya., Homogenization of Partial Differential Equations, Birkhäuser, Boston, 2006 | MR | Zbl

[42] Nguetseng G., “Homogenization in perforated domains beyond the periodic setting”, J. Math. Anal. Appl., 289 (2004), 608–628 | DOI | MR | Zbl

[43] Piatnitski A., Remy E., “Homogenization of elliptic difference operators”, SIAM J. Math. Anal., 33:1 (2001), 53–83 | DOI | MR | Zbl

[44] Piatnitski A., Sloushch V., Suslina T., Zhizhina E., “On operator estimates in homogenization of nonlocal operators of convolution type”, J. Differ. Equ., 352 (2023), 153–188 | DOI | MR | Zbl

[45] Piatnitski A., Zhizhina E., “Periodic homogenization of nonlocal operators with a convolution-type kernel”, SIAM J. Math. Anal., 49:1 (2017), 64–81 | DOI | MR | Zbl

[46] Sanchez-Palencia E., Non-Homogeneous Media and Vibration Theory, Springer, Berlin–Heidelberg–New York, 1980 | MR | Zbl

[47] Whitham G. B., “Two-timing, variational principles and waves”, J. Fluid Mech., 44 (1970), 373–395 | DOI | MR | Zbl

[48] Whitham G. B., Linear and Nonlinear Waves, Wiley, New York, 1974 | MR | Zbl