On recovery of the solution to the Cauchy problem for the singular heat equation
Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 1, pp. 173-187.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present the results related to the solution of the problem of the best recovery of the solution to the Cauchy problem for the heat equation with the B-elliptic Laplace–Bessel operator in spatial variables from an exactly or approximately known finite set of temperature profiles.
Keywords: Laplace–Bessel operator, optimal recovery, heat equation, singular equation.
Mots-clés : Fourier–Bessel transform
@article{CMFD_2024_70_1_a10,
     author = {S. M. Sitnik and M. V. Polovinkina and I. P. Polovinkin},
     title = {On recovery of the solution to the {Cauchy} problem for the singular heat equation},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {173--187},
     publisher = {mathdoc},
     volume = {70},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a10/}
}
TY  - JOUR
AU  - S. M. Sitnik
AU  - M. V. Polovinkina
AU  - I. P. Polovinkin
TI  - On recovery of the solution to the Cauchy problem for the singular heat equation
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2024
SP  - 173
EP  - 187
VL  - 70
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a10/
LA  - ru
ID  - CMFD_2024_70_1_a10
ER  - 
%0 Journal Article
%A S. M. Sitnik
%A M. V. Polovinkina
%A I. P. Polovinkin
%T On recovery of the solution to the Cauchy problem for the singular heat equation
%J Contemporary Mathematics. Fundamental Directions
%D 2024
%P 173-187
%V 70
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a10/
%G ru
%F CMFD_2024_70_1_a10
S. M. Sitnik; M. V. Polovinkina; I. P. Polovinkin. On recovery of the solution to the Cauchy problem for the singular heat equation. Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 1, pp. 173-187. http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a10/

[1] Abramova E. V., Magaril-Ilyaev G. G., Sivkova E. O., “Nailuchshee vosstanovlenie resheniya zadachi Dirikhle dlya poluprostranstva po ee netochnym izmereniyam”, Zhurn. vych. mat. i mat. fiz., 60:10 (2020), 1711–1720 | DOI | Zbl

[2] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, Fizmatgiz, M., 1958

[3] Gelfand I. M., Shilov G. E., Prostranstva osnovnykh i obobschennykh funktsii, Fizmatgiz, M., 1958 | MR

[4] Zhitomirskii Ya. I., “Zadacha Koshi dlya sistem lineinykh uravnenii v chastnykh proizvodnykh s differentsialnymi operatorami tipa Besselya”, Mat. sb., 36:2 (1955), 299–310

[5] Katrakhov V. V., Sitnik S. M., “Metod operatorov preobrazovaniya i kraevye zadachi dlya singulyarnykh ellipticheskikh uravnenii”, Sovrem. mat. Fundam. napravl., 64, no. 2, 2018, 211–426 | MR

[6] Kipriyanov I. A., “Preobrazovanie Fure—Besselya i teoremy vlozheniya dlya vesovykh klassov”, Tr. MIAN, 89, 1967, 130–213 | Zbl

[7] Kipriyanov I. A., Singulyarnye ellipticheskie kraevye zadachi, Nauka, M., 1997 | MR

[8] Kipriyanov I. A., Zasorin Yu. V., “O fundamentalnom reshenii volnovogo uravneniya s mnogimi osobennostyami”, Diff. uravn., 28:3 (1992), 452–462 | MR | Zbl

[9] Kipriyanov I. A., Kulikov A. A., “Teorema Peli—Vinera—Shvartsa dlya preobrazovaniya Fure—Besselya”, Dokl. AN SSSR, 298:1 (1988), 13–17 | Zbl

[10] Levitan B. M., “Razlozhenie v ryady i integraly Fure po funktsiyam Besselya”, Usp. mat. nauk, 6:2 (1951), 102–143 | MR | Zbl

[11] Lyakhov L. N., V-gipersingulyarnye integraly i ikh prilozheniya k opisaniyu funktsionalnykh klassov Kipriyanova i k integralnym uravneniyam s V-potentsialnymi yadrami, LGPU, Lipetsk, 2007

[12] Magaril-Ilyaev G. G., Osipenko K. Yu., “Optimalnoe vosstanovlenie resheniya uravneniya teploprovodnosti po netochnym izmereniyam”, Mat. sb., 200:5 (2009), 37–54 | DOI | MR | Zbl

[13] Magaril-Ilyaev G. G., Osipenko K. Yu., Sivkova E. O., “Optimalnoe vosstanovlenie temperatury truby po netochnym izmereniyam”, Tr. MIAN, 312, 2021, 216–223 | DOI | Zbl

[14] Magaril-Ilyaev G. G., Sivkova E. O., “Nailuchshee vosstanovlenie operatora Laplasa funktsii po ee netochno zadannomu spektru”, Mat. sb., 203:4 (2012), 119–130 | DOI | Zbl

[15] Sivkova E. O., “Ob optimalnom vosstanovlenii laplasiana funktsii po ee netochno zadannomu preobrazovaniyu Fure”, Vladikavkaz. mat. zh., 14:4 (2012), 63–72 | MR | Zbl

[16] Sitnik S. M., Shishkina E. L., Metod operatorov preobrazovaniya dlya differentsialnykh uravnenii s operatorami Besselya, Fizmatlit, M., 2019

[17] Alzamili K., Shishkina E., “On a singular heat equation and parabolic Bessel potential”, J. Math. Sci, 2024 | DOI

[18] Gradshteyn I. S., Ryzhik I. M., Table of Integrals, Series, and Products, Academic Press, Amsterdam, etc., 2007 | MR | Zbl

[19] Matiychuk M. I., Parabolic Singular Boundary-Value Problems, Inst. Mat. NAN Ukr., Kiev, 1999 (in Ukrainian)

[20] Muravnik A. B., “Fourier–Bessel transformation of compactly supported non-negative functions and estimates of solutions of singular differential equations”, Funct. Differ. Equ., 8:3-4 (2001), 353–363 | MR | Zbl

[21] Muravnik A. B., “Functional differential parabolic equations: integral transformations and qualitative properties of solutions of the Cauchy problem”, J. Math. Sci. (N.Y.), 216 (2016), 345–496 | DOI | MR | Zbl

[22] Polovinkina M. V., “Recovery of the operator $\Delta_B$ from its incomplete Fourier–Bessel image”, Lobachevskii J. Math., 41:5 (2020), 839–852 | DOI | MR | Zbl

[23] Polovinkina M. V., Polovinkin I. P., “Recovery of the solution of the singular heat equation from measurement data”, Bol. Soc. Mat. Mexicana, 29:41 (2023), 00513, 3 pp. | DOI | MR

[24] Sitnik S. M., Fedorov V. E., Polovinkina M. V., Polovinkin I. P., “On recovery of the singular differential Laplace–Bessel operator from the Fourier–Bessel transform”, Mathematics, 11 (2023) | DOI | MR