Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2024_70_1_a10, author = {S. M. Sitnik and M. V. Polovinkina and I. P. Polovinkin}, title = {On recovery of the solution to the {Cauchy} problem for the singular heat equation}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {173--187}, publisher = {mathdoc}, volume = {70}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a10/} }
TY - JOUR AU - S. M. Sitnik AU - M. V. Polovinkina AU - I. P. Polovinkin TI - On recovery of the solution to the Cauchy problem for the singular heat equation JO - Contemporary Mathematics. Fundamental Directions PY - 2024 SP - 173 EP - 187 VL - 70 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a10/ LA - ru ID - CMFD_2024_70_1_a10 ER -
%0 Journal Article %A S. M. Sitnik %A M. V. Polovinkina %A I. P. Polovinkin %T On recovery of the solution to the Cauchy problem for the singular heat equation %J Contemporary Mathematics. Fundamental Directions %D 2024 %P 173-187 %V 70 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a10/ %G ru %F CMFD_2024_70_1_a10
S. M. Sitnik; M. V. Polovinkina; I. P. Polovinkin. On recovery of the solution to the Cauchy problem for the singular heat equation. Contemporary Mathematics. Fundamental Directions, Functional spaces. Differential operators. Problems of mathematics education, Tome 70 (2024) no. 1, pp. 173-187. http://geodesic.mathdoc.fr/item/CMFD_2024_70_1_a10/
[1] Abramova E. V., Magaril-Ilyaev G. G., Sivkova E. O., “Nailuchshee vosstanovlenie resheniya zadachi Dirikhle dlya poluprostranstva po ee netochnym izmereniyam”, Zhurn. vych. mat. i mat. fiz., 60:10 (2020), 1711–1720 | DOI | Zbl
[2] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, Fizmatgiz, M., 1958
[3] Gelfand I. M., Shilov G. E., Prostranstva osnovnykh i obobschennykh funktsii, Fizmatgiz, M., 1958 | MR
[4] Zhitomirskii Ya. I., “Zadacha Koshi dlya sistem lineinykh uravnenii v chastnykh proizvodnykh s differentsialnymi operatorami tipa Besselya”, Mat. sb., 36:2 (1955), 299–310
[5] Katrakhov V. V., Sitnik S. M., “Metod operatorov preobrazovaniya i kraevye zadachi dlya singulyarnykh ellipticheskikh uravnenii”, Sovrem. mat. Fundam. napravl., 64, no. 2, 2018, 211–426 | MR
[6] Kipriyanov I. A., “Preobrazovanie Fure—Besselya i teoremy vlozheniya dlya vesovykh klassov”, Tr. MIAN, 89, 1967, 130–213 | Zbl
[7] Kipriyanov I. A., Singulyarnye ellipticheskie kraevye zadachi, Nauka, M., 1997 | MR
[8] Kipriyanov I. A., Zasorin Yu. V., “O fundamentalnom reshenii volnovogo uravneniya s mnogimi osobennostyami”, Diff. uravn., 28:3 (1992), 452–462 | MR | Zbl
[9] Kipriyanov I. A., Kulikov A. A., “Teorema Peli—Vinera—Shvartsa dlya preobrazovaniya Fure—Besselya”, Dokl. AN SSSR, 298:1 (1988), 13–17 | Zbl
[10] Levitan B. M., “Razlozhenie v ryady i integraly Fure po funktsiyam Besselya”, Usp. mat. nauk, 6:2 (1951), 102–143 | MR | Zbl
[11] Lyakhov L. N., V-gipersingulyarnye integraly i ikh prilozheniya k opisaniyu funktsionalnykh klassov Kipriyanova i k integralnym uravneniyam s V-potentsialnymi yadrami, LGPU, Lipetsk, 2007
[12] Magaril-Ilyaev G. G., Osipenko K. Yu., “Optimalnoe vosstanovlenie resheniya uravneniya teploprovodnosti po netochnym izmereniyam”, Mat. sb., 200:5 (2009), 37–54 | DOI | MR | Zbl
[13] Magaril-Ilyaev G. G., Osipenko K. Yu., Sivkova E. O., “Optimalnoe vosstanovlenie temperatury truby po netochnym izmereniyam”, Tr. MIAN, 312, 2021, 216–223 | DOI | Zbl
[14] Magaril-Ilyaev G. G., Sivkova E. O., “Nailuchshee vosstanovlenie operatora Laplasa funktsii po ee netochno zadannomu spektru”, Mat. sb., 203:4 (2012), 119–130 | DOI | Zbl
[15] Sivkova E. O., “Ob optimalnom vosstanovlenii laplasiana funktsii po ee netochno zadannomu preobrazovaniyu Fure”, Vladikavkaz. mat. zh., 14:4 (2012), 63–72 | MR | Zbl
[16] Sitnik S. M., Shishkina E. L., Metod operatorov preobrazovaniya dlya differentsialnykh uravnenii s operatorami Besselya, Fizmatlit, M., 2019
[17] Alzamili K., Shishkina E., “On a singular heat equation and parabolic Bessel potential”, J. Math. Sci, 2024 | DOI
[18] Gradshteyn I. S., Ryzhik I. M., Table of Integrals, Series, and Products, Academic Press, Amsterdam, etc., 2007 | MR | Zbl
[19] Matiychuk M. I., Parabolic Singular Boundary-Value Problems, Inst. Mat. NAN Ukr., Kiev, 1999 (in Ukrainian)
[20] Muravnik A. B., “Fourier–Bessel transformation of compactly supported non-negative functions and estimates of solutions of singular differential equations”, Funct. Differ. Equ., 8:3-4 (2001), 353–363 | MR | Zbl
[21] Muravnik A. B., “Functional differential parabolic equations: integral transformations and qualitative properties of solutions of the Cauchy problem”, J. Math. Sci. (N.Y.), 216 (2016), 345–496 | DOI | MR | Zbl
[22] Polovinkina M. V., “Recovery of the operator $\Delta_B$ from its incomplete Fourier–Bessel image”, Lobachevskii J. Math., 41:5 (2020), 839–852 | DOI | MR | Zbl
[23] Polovinkina M. V., Polovinkin I. P., “Recovery of the solution of the singular heat equation from measurement data”, Bol. Soc. Mat. Mexicana, 29:41 (2023), 00513, 3 pp. | DOI | MR
[24] Sitnik S. M., Fedorov V. E., Polovinkina M. V., Polovinkin I. P., “On recovery of the singular differential Laplace–Bessel operator from the Fourier–Bessel transform”, Mathematics, 11 (2023) | DOI | MR