Boundary-value problem for an elliptic functional differential equation with~dilation and rotation of arguments
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 4, pp. 697-711
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is devoted to the Dirichlet problem in a flat bounded domain for a linear second-order functional differential equation in the divergent form with dilation, contraction and rotation of the argument of the higher-order derivatives of the unknown function. We study the existence, the uniqueness and the smoothness of the generalized solution for all possible values of the coefficients and parameters of transformations in the equation.
Keywords:
elliptic functional differential equation, boundary-value problem.
@article{CMFD_2023_69_4_a9,
author = {L. E. Rossovskii and A. A. Tovsultanov},
title = {Boundary-value problem for an elliptic functional differential equation with~dilation and rotation of arguments},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {697--711},
publisher = {mathdoc},
volume = {69},
number = {4},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a9/}
}
TY - JOUR AU - L. E. Rossovskii AU - A. A. Tovsultanov TI - Boundary-value problem for an elliptic functional differential equation with~dilation and rotation of arguments JO - Contemporary Mathematics. Fundamental Directions PY - 2023 SP - 697 EP - 711 VL - 69 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a9/ LA - ru ID - CMFD_2023_69_4_a9 ER -
%0 Journal Article %A L. E. Rossovskii %A A. A. Tovsultanov %T Boundary-value problem for an elliptic functional differential equation with~dilation and rotation of arguments %J Contemporary Mathematics. Fundamental Directions %D 2023 %P 697-711 %V 69 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a9/ %G ru %F CMFD_2023_69_4_a9
L. E. Rossovskii; A. A. Tovsultanov. Boundary-value problem for an elliptic functional differential equation with~dilation and rotation of arguments. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 4, pp. 697-711. http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a9/