Boundary-value problem for an elliptic functional differential equation with~dilation and rotation of arguments
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 4, pp. 697-711.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the Dirichlet problem in a flat bounded domain for a linear second-order functional differential equation in the divergent form with dilation, contraction and rotation of the argument of the higher-order derivatives of the unknown function. We study the existence, the uniqueness and the smoothness of the generalized solution for all possible values of the coefficients and parameters of transformations in the equation.
Keywords: elliptic functional differential equation, boundary-value problem.
@article{CMFD_2023_69_4_a9,
     author = {L. E. Rossovskii and A. A. Tovsultanov},
     title = {Boundary-value problem for an elliptic functional differential equation with~dilation and rotation of arguments},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {697--711},
     publisher = {mathdoc},
     volume = {69},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a9/}
}
TY  - JOUR
AU  - L. E. Rossovskii
AU  - A. A. Tovsultanov
TI  - Boundary-value problem for an elliptic functional differential equation with~dilation and rotation of arguments
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2023
SP  - 697
EP  - 711
VL  - 69
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a9/
LA  - ru
ID  - CMFD_2023_69_4_a9
ER  - 
%0 Journal Article
%A L. E. Rossovskii
%A A. A. Tovsultanov
%T Boundary-value problem for an elliptic functional differential equation with~dilation and rotation of arguments
%J Contemporary Mathematics. Fundamental Directions
%D 2023
%P 697-711
%V 69
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a9/
%G ru
%F CMFD_2023_69_4_a9
L. E. Rossovskii; A. A. Tovsultanov. Boundary-value problem for an elliptic functional differential equation with~dilation and rotation of arguments. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 4, pp. 697-711. http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a9/

[1] Ambartsumyan V. A., “K teorii fluktuatsii yarkosti v mlechnom puti”, Dokl. AN SSSR, 44 (1944), 244–247

[2] Bitsadze A. V., Samarskii A. A., “O nekotorykh prosteishikh obobscheniyakh lineinykh ellipticheskikh kraevykh zadach”, Dokl. AN SSSR, 185:4 (1969), 739–740 | Zbl

[3] Derfel G. A., Molchanov S. A., “Spektralnye metody v teorii differentsialno-funktsionalnykh uravnenii”, Mat. zametki, 47 (1990), 42–51 | Zbl

[4] Onanov G. G., Skubachevskii A. L., “Differentsialnye uravneniya s otklonyayuschimisya argumentami v statsionarnykh zadachakh mekhaniki deformiruemogo tela”, Prikl. mekh., 15:5 (1979), 39–47 | MR | Zbl

[5] Rossovskii L. E., “Ellipticheskie funktsionalno-differentsialnye uravneniya so szhatiem i rastyazheniem argumentov neizvestnoi funktsii”, Sovrem. mat. Fundam. napravl., 54, 2014, 3–138

[6] Rossovskii L. E., Tasevich A. L., “Pervaya kraevaya zadacha dlya silno ellipticheskogo funktsionalno-differentsialnogo uravneniya s ortotropnymi szhatiyami”, Mat. zametki, 97:5 (2015), 733–748 | DOI | MR | Zbl

[7] Rossovskii L. E., Tasevich A. L., “Ob odnoznachnoi razreshimosti funktsionalno-differentsialnogo uravneniya s ortotropnymi szhatiyami v vesovykh prostranstvakh”, Diff. uravn., 53:12 (2017), 1679–1692 | DOI | MR | Zbl

[8] Rossovskii L. E., Tovsultanov A. A., “O zadache Dirikhle dlya ellipticheskogo funktsionalno-differentsialnogo uravneniya s affinnym preobrazovaniem argumenta”, Dokl. RAN, 489:4 (2019), 347–350 | DOI | MR | Zbl

[9] Rossovskii L. E., Tovsultanov A. A., “Funktsionalno-differentsialnye uravneniya s rastyazheniem i simmetriei”, Sib. mat. zh., 63:4 (2022), 911–923 | Zbl

[10] Skubachevskii A. L., “O spektre nekotorykh nelokalnykh ellipticheskikh kraevykh zadach”, Mat. sb., 117:4 (1982), 548–558 | MR | Zbl

[11] Skubachevskii A. L., “Nelokalnye kraevye zadachi so sdvigom”, Mat. zametki, 38:4 (1985), 587–598 | MR | Zbl

[12] Skubachevskii A. L., “O nekotorykh zadachakh dlya mnogomernykh diffuzionnykh protsessov”, Dokl. AN SSSR, 307:2 (1989), 287–292

[13] Skubachevskii A. L., “Kraevye zadachi dlya ellipticheskikh funktsionalno-differentsialnykh uravnenii i ikh prilozheniya”, Usp. mat. nauk, 71:5 (2016), 3–112 | DOI | MR | Zbl

[14] Tovsultanov A. A., “Funktsionalno-differentsialnoe uravnenie s rastyazheniem i povorotom”, Vladikavkaz. mat. zh., 23:1 (2021), 77–87 | DOI | MR | Zbl

[15] Hall A. J., Wake G. C., “A functional differential equation arising in the modeling of cell growth”, J. Aust. Math. Soc. Ser. B, 30 (1989), 424–435 | DOI | MR | Zbl

[16] Iserles A., “On neutral functional-differential equation with proportional delays”, J. Math. Anal. Appl., 207 (1997), 73–95 | DOI | MR | Zbl

[17] Kato T., McLeod J. B., “Functional differential equation $\dot{y}=ay(\lambda t)+by(t)$”, Bull. Am. Math. Soc., 77 (1971), 891–937 | DOI | MR | Zbl

[18] Ockendon J. R., Tayler A. B., “The dynamics of a current collection system for an electric locomotive”, Proc. Roy. Soc. Lond. A, 322 (1971), 447–468 | DOI

[19] Onanov G. G., Tsvetkov E. L., “On the minimum of the energy functional with respect to functions with deviating argument in a stationary problem of elasticity theory”, Russ. J. Math. Phys., 3 (1996), 491–500 | MR

[20] Rossovskii L., “Elliptic functional differential equations with incommensurable contractions”, Math. Model. Nat. Phenom., 12 (2017), 226–239 | DOI | MR | Zbl

[21] Rossovskii L. E., Tovsultanov A. A., “Elliptic functional differential equations with affine transformations”, J. Math. Anal. Appl., 480 (2019), 123403 | DOI | MR | Zbl

[22] Skubachevskii A. L., Elliptic Functional-Differential Equations and Applications, Birkhäuser, Basel, 1997 | MR | Zbl

[23] Skubachevskii A. L., “Nonlocal problems in the mechanics of three-layer shells”, Math. Model. Nat. Phenom., 12 (2017), 192–207 | DOI | MR | Zbl