Einstein material balance and modeling of the flow of compressible fluid near the boundary
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 4, pp. 643-663.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider sewing machinery between finite difference and analytical solutions defined at different scales: far away and near the source of the perturbation of the flow. One of the essences of the approach is that the coarse problem and the boundary-value problem in the proxy of the source model two different flows. In his remarkable paper, Peaceman proposes a framework for dealing with solutions defined on different scales for linear time independent problems by introducing the famous Peaceman well block radius. In this article, we consider a novel problem: how to solve this issue for transient flow generated by the compressibility of the fluid. We are proposing a method to glue solution via total fluxes, which are predefined on coarse grid, and changes in pressure, due to compressibility, in the block containing production (injection) well. It is important to mention that the coarse solution “does not see” the boundary. From an industrial point of view, our report provides a mathematical tool for the analytical interpretation of simulated data for compressible fluid flow around a well in a porous medium. It can be considered a mathematical “shirt” on the Peaceman well-block radius formula for linear (Darcy) transient flow but can be applied in much more general scenarios. In the article, we use the Einstein approach to derive the material balance equation, a key instrument to define $R_0$. We will expand the Einstein approach for three regimes of Darcy and non-Darcy flows for compressible fluids (time-dependent): I. stationary; II. pseudostationary; III. boundary dominated. Note that in all known authors literature, the rate of production on the well is time-independent.
Mots-clés : compressible fluid
Keywords: Peaceman radius, Einstein material balance.
@article{CMFD_2023_69_4_a5,
     author = {A. Ibragimov and E. Zakirov and I. Indrupskiy and D. Anikeev and A. Zhaglova},
     title = {Einstein material balance and modeling of the flow of compressible fluid near the boundary},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {643--663},
     publisher = {mathdoc},
     volume = {69},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a5/}
}
TY  - JOUR
AU  - A. Ibragimov
AU  - E. Zakirov
AU  - I. Indrupskiy
AU  - D. Anikeev
AU  - A. Zhaglova
TI  - Einstein material balance and modeling of the flow of compressible fluid near the boundary
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2023
SP  - 643
EP  - 663
VL  - 69
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a5/
LA  - ru
ID  - CMFD_2023_69_4_a5
ER  - 
%0 Journal Article
%A A. Ibragimov
%A E. Zakirov
%A I. Indrupskiy
%A D. Anikeev
%A A. Zhaglova
%T Einstein material balance and modeling of the flow of compressible fluid near the boundary
%J Contemporary Mathematics. Fundamental Directions
%D 2023
%P 643-663
%V 69
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a5/
%G ru
%F CMFD_2023_69_4_a5
A. Ibragimov; E. Zakirov; I. Indrupskiy; D. Anikeev; A. Zhaglova. Einstein material balance and modeling of the flow of compressible fluid near the boundary. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 4, pp. 643-663. http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a5/

[1] Vakhitov G. G., “Reshenie zadach podzemnoi gidrodinamiki metodom konechnykh raznostei”, Tr. VNIIneft, 10 (1957), 53–88

[2] Landis E. M., Uravneniya vtorogo poryadka ellipticheskogo i parabolicheskogo tipov, Nauka, M., 1971 | MR

[3] Tolstov Yu. G., “Primenenie metoda elektricheskogo modelirovaniya fizicheskikh yavlenii k resheniyu nekotorykh zadach podzemnoi gidravliki”, Zh. tekhn. fiz., 12:10 (1942), 20–25

[4] Anikeev D. P., Ibragimov A. I., Indrupskiy I. M., “Non-linear flow simulations with corrected Peaceman formula for well pressure calculation”, AIP Conf. Proc., 2872 (2023), 120053 | DOI

[5] Budak B. M., Samarskii A. A., Tikhonov A. N., A collection of problems on mathematical physics, Pergamon Press, Oxford—London—Edinburgh—New York—Paris—Frankfurt, 1964 | MR

[6] Dake L. P., Fundamentals of reservoir engineering, Elsevier, Amsterdam—London—New York—Tokyo, 1978

[7] Ding Y., Renard G., Weill L., “Representation of wells in numerical reservoir simulation”, SPE Res. Eval. Engrg., 1 (1998), 18–23 | DOI

[8] Einstein A., “Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen”, Ann. Phys., 322:8 (1905), 549–560 | DOI

[9] Ibragimov A., Khalmanova D., Valko P. P., Walton J. R., “On a mathematical model of the productivity index of a well from reservoir engineering”, SIAM J. Appl. Math., 65 (2005), 1952 | DOI | MR | Zbl

[10] Ibragimov A., Sobol Z., Hevage I., “Einstein's model of “the movement of small particles in a stationary liquid” revisited: finite propagation speed”, Turkish J. Math., 47 (2023), 4 | DOI | MR

[11] Ibragimov A., Zakirov E., Indrupskiy I., Anikeev D., Fundamentals in Peaceman model for well-block radius for non-linear flows near well, 2022, arXiv: 2203.10140

[12] Klausen R. A., Aavatsmark I., “Connection transmissibility factors in reservoir simulation for slanted wells in 3D grids”, Proc. of the 7th European Conf. on the Mathematics of Oil Recovery (Baveno, Italy, 5-8 September 2000), 2000, cp-57-00032

[13] Mochizuki S., “Well productivity for arbitrarily inclined well”, SPE Reservoir Simulation Symposium, 1995, SPE-29133-MS

[14] Ouyang L. B., Aziz K., “A general single-phase wellbore/reservoir coupling model for multilateral wells”, SPE Res. Eval. Engrg., 4 (2001), 327–335 | DOI

[15] Peaceman D. W., “Interpretation of well-block pressures in numerical reservoir simulation”, SPE Journal, 18 (1978), 183–194

[16] Peaceman D. W., “Interpretation of well-block pressures in numerical reservoir simulation with nonsquare grid blocks and anisotropic permeability”, SPE Journal, 23 (1983), 531–543

[17] Peaceman D. W., “Representation of a horizontal well in numerical reservoir simulation”, SPE Adv. Tech. Ser., 1 (1993), 7–16 | DOI