Eta-invariant of elliptic parameter-dependent boundary-value problems
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 4, pp. 599-620.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the eta-invariant of elliptic parameter-dependent boundary value problems and its main properties. Using Melrose's approach, we define the eta-invariant as a regularization of the winding number of the family. In this case, the regularization of the trace requires obtaining the asymptotics of the trace of compositions of invertible parameter-dependent boundary value problems for large values of the parameter. Obtaining the asymptotics uses the apparatus of pseudodifferential boundary value problems and is based on the reduction of parameter-dependent boundary value problems to boundary value problems with no parameter.
Mots-clés : eta-invariant
Keywords: elliptic parameter-dependent boundary value problem, pseudodifferential boundary value problem, Boutet de Monvel operator, regularized trace.
@article{CMFD_2023_69_4_a3,
     author = {K. N. Zhuikov and A. Yu. Savin},
     title = {Eta-invariant of elliptic parameter-dependent boundary-value problems},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {599--620},
     publisher = {mathdoc},
     volume = {69},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a3/}
}
TY  - JOUR
AU  - K. N. Zhuikov
AU  - A. Yu. Savin
TI  - Eta-invariant of elliptic parameter-dependent boundary-value problems
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2023
SP  - 599
EP  - 620
VL  - 69
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a3/
LA  - ru
ID  - CMFD_2023_69_4_a3
ER  - 
%0 Journal Article
%A K. N. Zhuikov
%A A. Yu. Savin
%T Eta-invariant of elliptic parameter-dependent boundary-value problems
%J Contemporary Mathematics. Fundamental Directions
%D 2023
%P 599-620
%V 69
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a3/
%G ru
%F CMFD_2023_69_4_a3
K. N. Zhuikov; A. Yu. Savin. Eta-invariant of elliptic parameter-dependent boundary-value problems. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 4, pp. 599-620. http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a3/

[1] Agranovich M. S., “Ob ellipticheskikh psevdodifferentsialnykh operatorakh na zamknutoi krivoi”, Tr. Mosk. mat. ob-va, 47, 1984, 22–67 | Zbl

[2] Agranovich M. S., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, Usp. mat. nauk, 19:3 (1964), 53–161 | MR | Zbl

[3] Zhuikov K. N. Savin A. Yu., “Eta-invariant dlya semeistv s parametrom i periodicheskimi koeffitsientami”, Ufimsk. mat. zh., 14:2 (2022), 37–57 | MR | Zbl

[4] Zhuikov K. N., Savin A. Yu., “Eta-invarianty dlya operatorov s parametrom, assotsiirovannykh s deistviem diskretnoi gruppy”, Mat. zametki, 112:5 (2022), 705–717 | DOI | MR

[5] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi i uglovymi tochkami”, Tr. Mosk. mat. ob-va, 16, 1967, 209–292 | Zbl

[6] Rempel Sh., Shultse B.-V., Teoriya indeksa ellipticheskikh kraevykh zadach, Moskva, M., 1986 | MR

[7] Skubachevskii A. L., “Kraevye zadachi dlya ellipticheskikh funktsionalno-differentsialnykh uravnenii i ikh prilozheniya”, Usp. mat. nauk, 71:5 (2016), 801–906 | MR | Zbl

[8] Shubin M. A., Psevdodifferentsialnye operatory i spektralnaya teoriya, Nauka, M., 1978

[9] Eskin G. I., Kraevye zadachi dlya ellipticheskikh psevdodifferentsialnykh uravnenii, Nauka, M., 1973 | MR

[10] Atiyah M., Patodi V., Singer I., “Spectral asymmetry and Riemannian geometry. I”, Math. Proc. Cambridge Philos. Soc., 77 (1975), 43–69 | DOI | MR | Zbl

[11] Atiyah M., Patodi V., Singer I., “Spectral asymmetry and Riemannian geometry. II”, Math. Proc. Cambridge Philos. Soc., 78 (1976), 405–432 | DOI | MR

[12] Atiyah M., Patodi V., Singer I., “Spectral asymmetry and Riemannian geometry. III”, Math. Proc. Cambridge Philos. Soc., 79 (1976), 71–99 | DOI | MR | Zbl

[13] Boutet de Monvel L., “Boundary problems for pseudodifferential operators”, Acta Math., 126 (1971), 11–51 | DOI | MR | Zbl

[14] Bunke U., “On the gluing problem for the $\eta$-invariant”, J. Differ. Geom., 41 (1995), 397–488 | DOI | MR

[15] Dai X., “Adiabatic limits, non-multiplicativity of signature and the Leray spectral sequence”, J. Am. Math. Soc., 4 (1991), 265–321 | DOI | MR | Zbl

[16] Donnelly H., “Eta-invariants for $G$-spaces”, Indiana Univ. Math. J., 27 (1978), 889–918 | DOI | MR | Zbl

[17] Fedosov B. V., Schulze B.-W., Tarkhanov N., “The index of higher order operators on singular surfaces”, Pacific J. Math., 191:1 (1999), 25–48 | DOI | MR | Zbl

[18] Gilkey P. B., Smith L., “The eta invariant for a class of elliptic boundary value problems”, Commun. Pure Appl. Math., 36 (1983), 85–132 | DOI | MR

[19] Grubb G., Functional calculus of pseudodifferential boundary problems, Birkhäuser, Boston, 1996 | MR | Zbl

[20] Kuchment P., “An overview of periodic elliptic operators”, Bull. Am. Math. Soc., 53:3 (2016), 343–414 | DOI | MR | Zbl

[21] Lesch M., Differential operators of Fuchs type, conical singularities, and asymptotic methods, B. G. Teubner Verlag, Stuttgart—Leipzig, 1997 | MR

[22] Lesch M., Moscovici H., Pflaum M. J., Connes—Chern character for manifolds with boundary and eta cochains, Mem. Am. Math. Soc., 220, no. 1036, 2012, viii+92 pp. | MR

[23] Lesch M., Pflaum M., “Traces on algebras of parameter dependent pseudodifferential operators and the eta-invariant”, Trans. Am. Math. Soc., 352:11 (2000), 4911–4936 | DOI | MR | Zbl

[24] Melrose R., “The eta invariant and families of pseudodifferential operators”, Math. Res. Lett., 2:5 (1995), 541–561 | DOI | MR | Zbl

[25] Melrose R., Rochon F., “Eta forms and the odd pseudodifferential families index”, Perspectives in mathematics and physics, Essays dedicated to Isadore Singer's 85th birthday, Int. Press, Somerville, 2011, 279–322 | MR | Zbl

[26] Mrowka T., Ruberman D., Saveliev N., “An index theorem for end-periodic operators”, Compos. Math., 152:2 (2016), 399–444 | DOI | MR | Zbl

[27] Müller W., “Eta-invariants and manifolds with boundary”, J. Differ. Geom., 40 (1994), 311–377 | DOI | MR | Zbl

[28] Nazaikinskii V., Savin A., Schulze B.-W., Sternin B., Elliptic theory on singular manifolds, CRC-Press, Boca Raton, 2005 | MR

[29] Ruzhansky M., Turunen V., “Global quantization of pseudo-differential operators on compact Lie groups, SU(2), 3-sphere, and homogeneous spaces”, Int. Math. Res. Not., 2013:11 (2013), 2439–2496 | DOI | MR | Zbl

[30] Savin A. Yu., Zhuikov K. N., “$\eta$-invariant and index for operators on the real line periodic at infinity”, Eurasian Math. J., 12:3 (2021), 57–77 | DOI | MR | Zbl

[31] Schrohe E., “A short introduction to Boutet de Monvel's calculus”, Approaches to singular analysis, Based on the workshop (Berlin, Germany, April 8–10, 1999), Birkhäuser, Basel, 2001, 85–116 | DOI | MR | Zbl

[32] Taubes C. H., “Gauge theory on asymptotically periodic 4-manifolds”, J. Differ. Geom., 25:3 (1987), 363–430 | DOI | MR | Zbl

[33] Zhuikov K. N., “Index of differential-difference operators on an infinite cylinder”, Russ. J. Math. Phys., 29:2 (2022), 280–290 | DOI | MR | Zbl