Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2023_69_4_a3, author = {K. N. Zhuikov and A. Yu. Savin}, title = {Eta-invariant of elliptic parameter-dependent boundary-value problems}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {599--620}, publisher = {mathdoc}, volume = {69}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a3/} }
TY - JOUR AU - K. N. Zhuikov AU - A. Yu. Savin TI - Eta-invariant of elliptic parameter-dependent boundary-value problems JO - Contemporary Mathematics. Fundamental Directions PY - 2023 SP - 599 EP - 620 VL - 69 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a3/ LA - ru ID - CMFD_2023_69_4_a3 ER -
K. N. Zhuikov; A. Yu. Savin. Eta-invariant of elliptic parameter-dependent boundary-value problems. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 4, pp. 599-620. http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a3/
[1] Agranovich M. S., “Ob ellipticheskikh psevdodifferentsialnykh operatorakh na zamknutoi krivoi”, Tr. Mosk. mat. ob-va, 47, 1984, 22–67 | Zbl
[2] Agranovich M. S., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, Usp. mat. nauk, 19:3 (1964), 53–161 | MR | Zbl
[3] Zhuikov K. N. Savin A. Yu., “Eta-invariant dlya semeistv s parametrom i periodicheskimi koeffitsientami”, Ufimsk. mat. zh., 14:2 (2022), 37–57 | MR | Zbl
[4] Zhuikov K. N., Savin A. Yu., “Eta-invarianty dlya operatorov s parametrom, assotsiirovannykh s deistviem diskretnoi gruppy”, Mat. zametki, 112:5 (2022), 705–717 | DOI | MR
[5] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi i uglovymi tochkami”, Tr. Mosk. mat. ob-va, 16, 1967, 209–292 | Zbl
[6] Rempel Sh., Shultse B.-V., Teoriya indeksa ellipticheskikh kraevykh zadach, Moskva, M., 1986 | MR
[7] Skubachevskii A. L., “Kraevye zadachi dlya ellipticheskikh funktsionalno-differentsialnykh uravnenii i ikh prilozheniya”, Usp. mat. nauk, 71:5 (2016), 801–906 | MR | Zbl
[8] Shubin M. A., Psevdodifferentsialnye operatory i spektralnaya teoriya, Nauka, M., 1978
[9] Eskin G. I., Kraevye zadachi dlya ellipticheskikh psevdodifferentsialnykh uravnenii, Nauka, M., 1973 | MR
[10] Atiyah M., Patodi V., Singer I., “Spectral asymmetry and Riemannian geometry. I”, Math. Proc. Cambridge Philos. Soc., 77 (1975), 43–69 | DOI | MR | Zbl
[11] Atiyah M., Patodi V., Singer I., “Spectral asymmetry and Riemannian geometry. II”, Math. Proc. Cambridge Philos. Soc., 78 (1976), 405–432 | DOI | MR
[12] Atiyah M., Patodi V., Singer I., “Spectral asymmetry and Riemannian geometry. III”, Math. Proc. Cambridge Philos. Soc., 79 (1976), 71–99 | DOI | MR | Zbl
[13] Boutet de Monvel L., “Boundary problems for pseudodifferential operators”, Acta Math., 126 (1971), 11–51 | DOI | MR | Zbl
[14] Bunke U., “On the gluing problem for the $\eta$-invariant”, J. Differ. Geom., 41 (1995), 397–488 | DOI | MR
[15] Dai X., “Adiabatic limits, non-multiplicativity of signature and the Leray spectral sequence”, J. Am. Math. Soc., 4 (1991), 265–321 | DOI | MR | Zbl
[16] Donnelly H., “Eta-invariants for $G$-spaces”, Indiana Univ. Math. J., 27 (1978), 889–918 | DOI | MR | Zbl
[17] Fedosov B. V., Schulze B.-W., Tarkhanov N., “The index of higher order operators on singular surfaces”, Pacific J. Math., 191:1 (1999), 25–48 | DOI | MR | Zbl
[18] Gilkey P. B., Smith L., “The eta invariant for a class of elliptic boundary value problems”, Commun. Pure Appl. Math., 36 (1983), 85–132 | DOI | MR
[19] Grubb G., Functional calculus of pseudodifferential boundary problems, Birkhäuser, Boston, 1996 | MR | Zbl
[20] Kuchment P., “An overview of periodic elliptic operators”, Bull. Am. Math. Soc., 53:3 (2016), 343–414 | DOI | MR | Zbl
[21] Lesch M., Differential operators of Fuchs type, conical singularities, and asymptotic methods, B. G. Teubner Verlag, Stuttgart—Leipzig, 1997 | MR
[22] Lesch M., Moscovici H., Pflaum M. J., Connes—Chern character for manifolds with boundary and eta cochains, Mem. Am. Math. Soc., 220, no. 1036, 2012, viii+92 pp. | MR
[23] Lesch M., Pflaum M., “Traces on algebras of parameter dependent pseudodifferential operators and the eta-invariant”, Trans. Am. Math. Soc., 352:11 (2000), 4911–4936 | DOI | MR | Zbl
[24] Melrose R., “The eta invariant and families of pseudodifferential operators”, Math. Res. Lett., 2:5 (1995), 541–561 | DOI | MR | Zbl
[25] Melrose R., Rochon F., “Eta forms and the odd pseudodifferential families index”, Perspectives in mathematics and physics, Essays dedicated to Isadore Singer's 85th birthday, Int. Press, Somerville, 2011, 279–322 | MR | Zbl
[26] Mrowka T., Ruberman D., Saveliev N., “An index theorem for end-periodic operators”, Compos. Math., 152:2 (2016), 399–444 | DOI | MR | Zbl
[27] Müller W., “Eta-invariants and manifolds with boundary”, J. Differ. Geom., 40 (1994), 311–377 | DOI | MR | Zbl
[28] Nazaikinskii V., Savin A., Schulze B.-W., Sternin B., Elliptic theory on singular manifolds, CRC-Press, Boca Raton, 2005 | MR
[29] Ruzhansky M., Turunen V., “Global quantization of pseudo-differential operators on compact Lie groups, SU(2), 3-sphere, and homogeneous spaces”, Int. Math. Res. Not., 2013:11 (2013), 2439–2496 | DOI | MR | Zbl
[30] Savin A. Yu., Zhuikov K. N., “$\eta$-invariant and index for operators on the real line periodic at infinity”, Eurasian Math. J., 12:3 (2021), 57–77 | DOI | MR | Zbl
[31] Schrohe E., “A short introduction to Boutet de Monvel's calculus”, Approaches to singular analysis, Based on the workshop (Berlin, Germany, April 8–10, 1999), Birkhäuser, Basel, 2001, 85–116 | DOI | MR | Zbl
[32] Taubes C. H., “Gauge theory on asymptotically periodic 4-manifolds”, J. Differ. Geom., 25:3 (1987), 363–430 | DOI | MR | Zbl
[33] Zhuikov K. N., “Index of differential-difference operators on an infinite cylinder”, Russ. J. Math. Phys., 29:2 (2022), 280–290 | DOI | MR | Zbl