Eta-invariant of elliptic parameter-dependent boundary-value problems
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 4, pp. 599-620
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we study the eta-invariant of elliptic parameter-dependent boundary value problems and its main properties. Using Melrose's approach, we define the eta-invariant as a regularization of the winding number of the family. In this case, the regularization of the trace requires obtaining the asymptotics of the trace of compositions of invertible parameter-dependent boundary value problems for large values of the parameter. Obtaining the asymptotics uses the apparatus of pseudodifferential boundary value problems and is based on the reduction of parameter-dependent boundary value problems to boundary value problems with no parameter.
Mots-clés :
eta-invariant
Keywords: elliptic parameter-dependent boundary value problem, pseudodifferential boundary value problem, Boutet de Monvel operator, regularized trace.
Keywords: elliptic parameter-dependent boundary value problem, pseudodifferential boundary value problem, Boutet de Monvel operator, regularized trace.
@article{CMFD_2023_69_4_a3,
author = {K. N. Zhuikov and A. Yu. Savin},
title = {Eta-invariant of elliptic parameter-dependent boundary-value problems},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {599--620},
publisher = {mathdoc},
volume = {69},
number = {4},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a3/}
}
TY - JOUR AU - K. N. Zhuikov AU - A. Yu. Savin TI - Eta-invariant of elliptic parameter-dependent boundary-value problems JO - Contemporary Mathematics. Fundamental Directions PY - 2023 SP - 599 EP - 620 VL - 69 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a3/ LA - ru ID - CMFD_2023_69_4_a3 ER -
K. N. Zhuikov; A. Yu. Savin. Eta-invariant of elliptic parameter-dependent boundary-value problems. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 4, pp. 599-620. http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a3/